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ABSTRACT 

The use of central differences on a rectangular net, in solving the primitive or vorticity equations, produces 
solutions on each of t.wo lattices. By exploring this lattice structure, a formal equivalence is established between 
the central-difference vorticity and primitive equations. A demonstration is given also that exponential instability 
previously found to result  from  certain types of boundary conditions is suppressed by applying these conditions in 
such a way as to avoid coupling the lattices. 

1. INTRODUCTION 
In a recent study  (Platzman [7J) the  primitive  equations 

(that  is, the  momentum  and  continuity  equations) were 
‘integrated numerically in an investigation of surges on 
Lake Michigan. It was pointed out  there  that, when 
central differences are used, the finite-difference primitive 
equations give rise to solutions on two  independent 
lattices. The purpose of the present note is to demon- 
strate that a more  satisfactory  understanding of the 
analytical properties of these  equations  is  provided  by 
taking account of this  lattice  structure.* 

2. THE  WAVE  EQUATION 
Consider a canal of uniform depth D and uniform cross 

section, closed by rigid vertical walls a t  x=O and x=L. 
The differential equation  for  “tidal”  disturbances  is  the 
one-dimensional wave  equation 

CYU a2u 
” 

a t2  -c2 G 2 ’  

where u is the particle  velocity  along x, and c=m. 
f This investigation was supported by funds provided by the U. 8. Weather Bureau. 
‘After the substance of the present work was completed, the writer’s attention was 

called to an elegant study  by A. Eliassen, in which similar  ideas are involved (A. Eliassen, 

ter Model of the Atmosphere,” University of California at Los Angeles, Department of 
“A Procedure for Numerical Integration of the Primitive Equations of the TWO-Para~ne- 

Meteorology, 1956). 

Partition  the  axes uniformly as follows: t/At=O, 1,2,  . . ., 
and x/Ax=O, 1, 2, . . . , p ,  so that L=pAx. Using cen- 
tral differences, 

6,2u=u”s:u, (2.1) 

where u=cAtlAx and 6 denotes  the  operator 

6 ~ u ( x , t ) = ~ ( s , t + ~ A t ) - u ( x , t - ~ A t )  

6 Z ~ ( ~ , t ) = ~ ( ~ + ~ A ~ , t ) - ~ ( ~ - ~ A X , t ) .  

Subject to  boundary conditions u(0,t) = O  and u(L,t) =O, : 

we may  represent u(x,t) by  the discrete Fourier series 
, 

u(x,t) = p u l ( t )  sin klx (2.2) 
-1 

k , z l r / L  (1=1, 2, . . . , p-I) 

where k ,  is the wave number of the  lth mode. 

ence  equation for the expansion coefficient ul( t ) :  
Substitution of (2.2) in (2.1) yields the following  differ- 

6,2u1= -4 (u sin 3k,Ax)2ul. 

The general  solution of this is 

ul( t )=a cos vit+j3 sin vl t ,  (2.3) 

where CY and 13 are  constants of integration,  and 
285 
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sin *vzAt= u sin +kzAx (2 -4) 

determines the frequency. 
For initial  conditions we specify u and buJdt; in  the 

finite-difference frame,  this is equivalent to a specification 
of uz(0)  and uz(At), in  terms of which (2.3) becomes 

u,(t)=(csc vzAt)[-uz(0) sin  vr(t-At)+uz(At)  sin vzt]. 
If we assign to ul(At) the  value 

uz(At>=uz(O)+2iz(O)At, 

where 2iz(0) is  bu,/bt at t=O, then we get 

uz(t) = (sec $vzAt)[uz(0) cos v,(t- &At) + 
GZ(0)(qAt csc $v,At) sin ~ $ 1 .  

This form  shows clearly the  amplitude  and phase  distor- 
tion produced by  truncation  errors (see Platzman [ 5 ] ) ,  and 
expresses the solution explicitly in  terms of data prescribed 
along the initial line. 

The finite-difference syst’em has  2(p-l) degrees of free- 
dom, represented by  the p-1 independent  values of 
u(x,O) and  the p-1 independent  values of u(x,At>, or by 
the values of the corresponding  Fourier coefficients. 
These degrees of freedom are provided by  the  2(p- 1) 
distinct  fundamental  modes exp ( & i v z t )  determined by 
the frequency  equation (2.4), of which p- 1 correspond 
to wave propagation  along  positive x, and p- 1 correspond 
to backward  propagation. 

3. THE PRIMITIVE EQUATIONS 

The preceding problem may  be  formulated  in  terms of 
the linearized primitive  equations 

bu ah 
” at“ gbz  

Z=”D -, bU 
dt bX 

where h  is the free-surface displacement  from  mean level. 
As before, we place u at  the points t / iA t=O,  2, 4, . . . , 

and x/$Ax=O, 2, 4, . . . , 2p;  further, we place h at the 
“half-way” points  t/$At=l,  3, 5, . . . , and x/&Ax=l,  3, 
5, . . . , 2p-1 (see  fig. la).  Then  the central difference 
equations  are, in  the  notation of (2.l), 

6tu= - a6,h (3.la) 
8th= -u~,u;  (3.lb) 

in (3.1), u and h have been reduced to dimensionless form 
through division, respec.tively, by C D  and D. If one 
eliminates h from (3.1), by applying 6 ,  to  (3.la),  equation 
(2.1) is  obtained, so that  our frequency  equation is again 
(2.4). However,  instead of working  with the wave-eyua- 
tion solutions, w-e will obtain  the solutions of (3.1) directly 
without elimination. 

We first  represent  u(x,t)  in  the  manner of (2.2), and 
h(z,t) by  the discrete series 

h(x,t)=~’h,(t) cos kzx. (3.2) 
1=0 

Substitution  in (3.1) yields 

&uZ= +2(u  sin  $kzAz)h, 
6,hz=--2(a sin  $kZAx)uz, 

for which  we have  the general  solution 
u,(t) =cy cos vzt+/3 sin vzt 
h,(t)=/3 cos v Z t - a  sin vzt, 

with v z  as  in (2.4). If, in  addition to  the  initial distribu- 
tion of u, one specifies the  initial  distribution of h (instead 
of the  initial acceleration  buldt), the solution is 
u,(t)= (sec  $vZAlt)[uz(O)  cos vL(t-$At)+h,(~At) sin vzt] (3.34 
h,(t)=(sec $vzAt)[hz($At) cos vZt-uz(0)  sin vl(t-$At)]. 

(3.3b) 
Note  that  the  initial values of h are  those assigned on the 
line  t=$At,  because in  the  lattice of figure la,  values of 
h are  not given on t =O.  

In figure l b  is shown the  lattice which is  initiated by 
assigning h  on  the  line t=O and u on t= $At. The solution 
in  this case is 
uz(t)= (sec  $vLAt)[u,($At) cos vZt+hz(O) sin vl(t-$At)] 

hz(t)= (sec $vzAt)[h,(0) cos U ~ ( ~ - - $ A ~ > - U , ( ) A ~ )  sin ~ $ 1 .  
(3.44 

(3.4b) 
The  lattices of figures la and l b  differ only by a phase 
shift of $At. 

The  equations (3.1) involve p-1 values of u (exclusive 
of the  boundary values, which are fixed a t  zero), and p 
values of h; hence,  there are 2p-1 degrees of freedom 
in the  initial  conditions. In  order  to  obtain  an equal 
number of fundamental modes for (3.1), one must include 
the  root Z=O, vz=O of the frequency  equation  (2.4); the 
corresponding mode is u=O, h=ho=constant, which evi- 
dently satisfies (3.1) and  boundary conditions. Note 
also that if (3.lb) is summed over  all  values of x where h 
is defined, the  right side  sums to zero, with  the help of 
the  boundary conditions, so that  the x-sum  of h is inde- 
pendent of t. (This is merely  a statement of the integral 
form of the  continuity equation.) From (3.2), we  see 
that  the x-sum of h  is  equal to  pho; hence,  again, ho=con- 
stant. 

To insure that  the finite-difference solution  is  stable,  it 
is sufficient to choose At and Ax so that a=cAt/Ax< 1, 
since  then the frequency v z  determined by (2.4) must be 
real. This is the von Neumann  stability condition, and 
is also the well-known restriction  on the difference equa- 
tions  for  hyperbolic  systems, which insures that  the solu- 
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( a )  (b) 
FIGURE 1.-Two lattices for solution of the primitive  equations. 

tions of the difference equation  and the solution of the 
differential equation coalesce in the  limit At, Ax+O.* 

Taking  this  limit in (3.3) or (3.4) 

uz(t)=uz(0) cos vzt+hz(0) sin vzt  (3.5a) 

hz(t)=hz(0) cos vzt-uz(0) sin vzt, (3.5b) 

the frequency  equation being simply vz=ckz. 
Suppose now that we specify as  initial  conditions  the 

values of u(z,O) at  x/Ax=O, 2 ,  4, . . . , 2p, and on the 
same line t=O the values of h(z,O) at  the intermediate 
points x/$Ax=l,  3,  5, . . . , 2p-1. To  initiate  the  lattice 
of figure la, we must  move  from h(x,O) to h(z,iAt); if we 
do this by  the uncentered step 

h(x,$At) =%(z,O)-im3,~(~,0), 

the.expansion coefficients h,($At) will be 

h,(3At)-=~,(0)-uz(0)  sin i v zA t .  

(In  these  and  in  subsequent  relations the  bar  is used to 
identify  quantities  associated  with  the  lattice of figure lb.) 
Substitution  in (3.3) yields 

uz(t) =u,(O) cos vztfh';iO) (sec 3vzAt) sin vzt  (3.6a) 

h,(t)=%,(O)(sec $vzAt) cos vzt -u,(O) sin vzt. (3.6b) 

Similarly, to  initiate  the  lattice of figure lb, we must 
move from u(z,  0)  to u(z, 4At); proceeding as above, we 
find 

'Convergence  (coalescence) may  he obtained for special  choices of initial data even 
though u>l  (see, for example,  Platzman [51). This may seem  paradoxical  because it 
suggests that  in the limit,  the domain of dependence  does not  span the interval  inter- 
cepted by two characteristics; but the  special  choices in question all involve  analytic 
initial data,  capable of continuation. On the other  hand, if one adopts  the debition 
of convergence employed by Lax  and  Richtmyer [3], the condition r<l is also  necessary 
(as well as sutacient), since they require  convergence for arbitrary initial data. In their 
basic study, Lax and  Richtmyer have established  equivalence  between stability and 
convergence, under  very  general  conditions. 

- 
uz(t) =uz(0) (sec 3vzAt) cos vit+&(0) sin v f  (3.7a) 

h,(t) = x Z ( O )  cos vzt -uz(0) (sec 3vzAt) sin vzt. (3.7b) 

In (3.6) the  initial  data uz(0) are concordant, in  the sense 
that  they belong to  the  lattice on which the solution is 
represented; on the  other  hand, G(0) in (3.6) are discord- 
ant data. Similarly,  with  respect to  the  lattice on  which 

hz(0) are concordant data. 
Using the exact  solution (3.5) for comparison, one may 

characterize (3.6) and (3.7) by saying that, if all  initial 
data originate on the same  line (t=O), the concordant 
data are propagated  without  distortion (of amplitude or 
phase) while the discordant data suffer an amplitude 
distortion sec 3vzAt. 

It is important  to  bear  in mind that in the solution  (3.6)) 
on the  lattice of figure la, the values of uz(t) are to be 
taken  only  for t/$At=O, 2, 4, . . ., while the values of 
hz(t)  are for t/+At=l, 3, 5, . . .; the converse is true of 
(3.7)) which applies to  the  lattice of figure lb. One can, 
of course,  represent  the  two  solutions  in  a single formula. 
This can  be  done  with the aid of the  functions 

- 

- (3.7) represents a solution, the uz(0) are  discordant  and 

Fz(t)=i[l+( -)n]+#[l -(-)"I sec h i t  

Gz(t)=4[1 - (  -)"]+3[1+( -)"I sec 3vzAt, 

where n=t/)At; evidently, when n is even, Fz=l and 
Gz=sec 3vzAt, and when n is  odd,  F8=sec 3vzAt and 
Gz=l. On this  understanding,  the  solutions (3.6) and 
(3.7) are  contained  in the single representation 

u,(O)F,(t) cos vzt+El(0)Gz(t) sin vzt (3.8a) 



288 MONTHLY  WEATHER  HEVIEW 

in which (3.8a) and (3.8b) represent,  respectively, u l ( t )  
and &(t) when t/$At is even,  or ';l;(t) and h,(t) when 
t/$At is  odd. This solution  exhibits a form which is 
characteristic of all  double-lattice  representations,  namely, 
a "carrier" wave of period At, upon which the  true solu- 
tion is  modulated. The carrier  wave  is  imposed by  the 
functions F,(t)  and G,(t). 

In connection  with  numerical  computation,  since 
truncation  errors  are  determined  primarily by  the size of 
the mesh (Ax,  At), and since the two lattices of figure 1 
have the same mesh size, little is  gained by computing on 
both  lattices.  Indeed,  the  double-lattice  representation 
(3.8) evidently  is  more  involved than (3.6) or  (3.7),  and 
tends to obscure the simpler  features of the  latter. 

A final comment will be  helpful  here,  concerning  a  relax- 
ation of the end  conditions u=O. Suppose that  at  the 
ends x=O and x=L the canal  is not closed, but  that  the 
flow there  can be regulated  independently of the motion 
in  the  canal;  let u(0,t)  and u(L , t )  be the end  velocities thus 
imposed. The  representation (2.2) may now be  amended 
to  read 

9-1 

1=1 
u ( x , t ) = X u , ( t )  sin kzx+u(O,t)+[u(L,t)-u(O,t)]x/L, 

while  (3.2) is  unaltered.  Substitution  in (3.1) leads to  an 
inhomogeneous system  for u l ( t )  and h,(t). The  funda- 
mental modes are  identical  to  those  obtained  above,  but 
a particular  solution  must  be  added now to  incorporate 
the forcing which comes from  the ends. The  integral 
form of the  continuity  equation is 

obtained by summing (3.lb) over  all x-points where h is 
defined. Clearly, this  states merely that  the change of 
mean level is determined by thc, net volume transport 
through the ends. 

In particular, if u(0,t) and u(L , t )  are  constants  (inde- 
pendent of t )  we have  the following particular  solution 

u=u(0,t)+[u(L,t)-u(O,t)]x/L 

h= -[u(L,t)   -u(O,t)]ct/L 

(Since 2 and t enter  here  linearly,  this  is a solution  with 
zero truncation  error.)  The  fact that h is  a  linear  function 
of t obviously results  from  the  constant  net volume trans- 
port imposed at  the ends.  Mathematically,  this  may  be 
interpreted  as  a  resonant  solution of the inhomogeneous 
system  for uz and h, coming from the mode  corresponding 
to I = O ,  the frequency of which is zero and coincident  there- 
fore with the zero frequency  inherent  in the  constant  values 
of u(0,t) and u (L,t). * 

4. THE VORTICITY EQUATION 
The linearized one-dimensional vorticity  equation  is 

difference vorticity equation has been  undertaken by BirchEeld [l]. 
*A thorough discussion of resonance in the application of end conditions to the finite- 

where /3 is the Rossby  parameter  and U is the zonal wind 
component,  assumed  uniform and  constant. 

For  the present  purpose it suffices to  take  the case @=O: 

Using  central differences 

6 J =  - a M ,  (4.2) 

where u 3 UAt/Ax and 6,, 6, are  the difference operators 
defined previously, as in (2.1). To aid  in  identifying the 
lattice  structure of (4.2), and for  comparison  with the 
primitive  equations discussed in  the preceding  section, we 
will denote  vorticity  values a t  the  points x/$Ax=l, 3, 
5, . . . , 2p-1 by  the symbol w and  those at  the points 
x/+Ax=O, 2, 4, . . . , 2p,  by  the symbol p .  On  reference 
to the  lattices of figure 2, we find that equation (4.2) is 
equivalent  to the system 

St{=  - U 6 N  (4.3a) 

&w= -a6,{. (4.3b) 

The structure of t h s e  equations i s  identical  to  that of the 
primitive  equations ( S . l ) ,  with { playing the role of u and w 
that of h. The significance of this equivalence  is that (4.3) 
must  admit of both forward and backward  wave propa- 
gation  (as  in the primitive  equations),  whereas  the parent 
differential  equation (the  vorticity  equation) permits 
propagation  in one direction  only;  in other words, (4.3) 
has  the  properties of a  continuous  hyperbolic  system with 
two families of characteristics, while only  one family is 
allowed by  the  vorticity  equation.  The  intrusion of this 
virtual  set of characteristics, and  the associated truncation 
errors,  are the penalties  imposed by  the use of central 
differences. 

The preceding  remarks  can  be  made  more specific, as 
follows. If one eliminates w from  (4.3), the  result is 

6 121 = a26,2t,  (4.4) 

which is the wave  equation (2.1). In  other words, the 
{-field on  the  lattices of figure 2 satisfies the finite-differ- 
ence wave  equation. The corresponding differential 
equation  may be obtained  merely  by  differentiating (4.1) 
with  respect to t ,  and eliminating the resulting mixed 
derivative  by  using (4.1) again;  one  finds 

We  now ask  the question: how  do the solutions of  (4.5) 
compare  with  those of (4.1)? 

To examine this question,  one  must be very explicit 
about  the  boundary  and  initial conditions. For (4.5), we 
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' 1  

FIGURE 2,"Two lattices for solution of the  vorticity equation. 

impose f and  bf/bt  on the, line t=O, and { = O  on  the ends 
z=O and x=L for  all t; the  latter condition  corresponds to 
total reflection. For (4.1), we impose { on the line t=O 
and l = O  on the end x=O; the  latter condition presupposes 
U>O (which we assume  henceforth), so that z=O is a 
point of inflow for the  vorticity.  The solution of (4.1) is 
$hen, with reference to figure 3, 

f(x,t)=f(z- Ut,O) inside A&,,.& 

( (x$)  = 0 outside A&dl .  

Thus, the  initial  values of { on A,$,, as well as the inflow 
values  of f on the line A,B,A, . . . are simply  propagated 
without change along the characteristics x- Ut=constant; 
which are  the only  characteristics  admitted  by (4.1). 

To obtain  an explicit and  appropriate  solution of (4.5), 
we will assume that  bfldt on the initial  line  only is specified 
in accordance with (4.1). This means that initia,lly, the 
motion is organized strictly as a  forward  wave  propaga- 
tion. A disturbance a t  any  point on the  initial  line,  such 
as D (fig. 3), therefore  moves out along the forward 
characteristic x- Ut=constant,  until  the  boundary a t  
x=L is reached.  There, total reflection occurs and  the 
disturbance returw along the backward  characteristic 
zfUt=constant. It follows that in  the  triangle AoBoCo 
the solutions of (4.1) and (4.5) coincide, since  no  point in 
this triangle is accessible by reflection; in  particular, 
l(P)=f(D). On  the  other  hand, every point. in the 
triangle C&AI, is accessible from  two  points  on  the  initial 
line; for example, f(Q)=f(D)-{(E). In  this  triangle 
therefore, the solutions of (4.1) and (4.5) do  not coincide, 
since (4.1) requires f(Q) ={(D). Evidently, (4.5) permits 
the point Q to  be affected by  the reflected disturbance 
originating a t  E on  the  initial line.  Similarly, in  the  par- 

allelogram CJ,C,B,, we have f(R)=-{(D) from (4.4) 
and c(R)=O from (4.1), while in  the triangle BlClA2 we 
have {(&')={(E) -f(D) from (4.5) and f ( S ) = O  from (4.1). 

The preceding discussion shows that only in  the triangle 
AoBoCo do  the solutions of (4.5) and (4.1) coincide.* The 
finite-difference equations (4.3) will, of course, exhibit 
the  properties of (4.5). We turn now to a consideration 
of these  equations. 

In  an earlier study of equation (4.2) the  writer showed 
that  an  arbitrary imposition of { on  the boundaries  leads 
to a  "neutral"  prediction system;  that is, a  system whose 
modes are  neither  damped  nor amplified, apart  from 
resonance (Platzman [SI). I n  particular,. if one takes 
f = O  at.  the eods, then  the problem posed by (4.3) is 
identical  to that of "tidal" motion in a closed canal; the 
solutions of which have been  given  in  detail  in the pre- 
ceding sections;  hence, if in  the  latter solutions we replace 
u by f and h by w ,  we obta.in the solution of (4.3). From 
( 2 . 2 )  and (3.2) we have 

P--l 

2=1 

P-1 

z=o 

f (x , t )=C{, ( t )  sin krx  (4.613) 

w(x,t)=r,wl(t) cos ka; (4.6b) 

if all initial  conditions  are specifled on the line t=O, we 
get  solutions of the  form (3.6a) and (3.6b), or (3.7a) a.nd 
(3.7b),  for  the coefficients { , ( t )  and w,(t), respectively. 

It is pertinent  to  note  that  in  the  limit Ax, At+O the 
finite-difference solutions f and w determined in the 
manner just described will coalesce with  the  continuous 
solutions of the  equivalent  primitive (or wave) equations, 

dence of the two solutions also in the triangles AQCQBI, C1.41Bz, and SQ Qn, where both 
*In the particular case considered, with S=O on the inflow boundary, we have coin& 

solutions give S=O. 
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A 2  

B1 

A0 D E B O  
FIGURE 3.-Characteristic  diagram for comparison of equations 

(4.1) and (4.3). 

but will not coalesce with  the  continuous  solution of the 
vorticity  equation,  and in particular,  the fields r and o 
will not themselves coalesce. This anomalous  behavior 
of the central-difference vorticity  equation  is  readily 
understood  from figure 3 and  the  related discussion of 
(4.-5) given above. 

One  way to  circumvent  the difficulties encountered in 
the central-difference vorticity  equation is to use one-sided 
differences. In  (4.1), we may  take  forward differences 
in t and (if U>O) backward differences in x: 

r(s,t+At)-r((2,t)=a[r(~,t)”(~-Az,t)l, 

where U E  UAt/Ax. This  makes 

r(s,t+At)=(l--)e(x,t)+ar(~”,t). 

The solution of this  equation is obtained  most  readily 
by induction. If f ( O , t ) = O ,  one  finds 

{(z,t)=& @) ~ ‘ ” ~ ( 1 -  ~ ) ~ f ( x - - n A s + k A z , O ) ,  (4.7) 
k=O 

where nrt/At, on the  understanding  that  in  the  sum- 
mation, r ( x , O ) = O  where s<O. 

The use of one-sided differences can  be extended quite 
naturally to  the two-dimensional vorticity  equation,  and 
in  this  context  has  been  reported  by Bolin [2] as having 
been tested  by  the  Stockhslm group. For  computational 

stability one must  make u s  1; hence, if variations of U 
are considered, one  normally will have .<<I, over most 
of the field, in which case by inspection of (4.7) it is clear 
that  the solution  is highly damped.* 

5. THE STABILITY OF BOUNDARY CONDITIONS 
I n  the earlier study  the  writer [6] proved that insta- 

bilities me  introduced  by  boundary  conditions  in which 
the  vorticity at  a.n outflow point is determined  by “zero- 
or  first-order  extrapolation”  from the concurrent vor- 
ticities a t  neighboring  interior  points. The boundary 
conditions of “zero-order extrapolat’ion” (case I1 in the 
previous work) may  be expressed 

[(L,t)=ij(L-iAX,t) 

c(L,t) =@(.L-- i A ~ , t ) ,  
- (5.1) 

where the  bar signifies elements of the  lattice of figure 2b. 
Since the two lattices were not considered separately, 
these  conditions  evidently  introduce a coupling between 
the  lattices;  the  result is a weak but exponential instability 
in  the  fundamental modes. 

We  will  show  now that if the outflow conditions just 
described are applied  in  such  a  way that  the  lattices are 
not coupled, then  the  instability is  rem0ved.t The 
appropriate revision is 

c (L , t )=c (L-A~, t ) .  (5.2) 

Our proof (of stability) will consist of a  construction of 
the  fundamental modes. We begin with  the expansions 

t(s, t )  =Cr l  ( 0  sin K ~ X  (5.3a) 
P-1 

1=1 

U ( Z ,  t ) = g W z ( t )  COS K l X + f l ,  (5.3b). 
1=1 

which are similar to (4.6). Irrespective of the values 
assigned to K ~ ,  these  satisfy  the  basic  equations (4.3) 
provided f z ( t )  and w z ( t )  are  suitable  linear combinations 
of cos vit and sin vlt, where v I  is the frequency deter- 
mined by (2.4). Further, (5.3a) satisfies the inflow 
condition c ( O , t ) = O .  In  (5.3b), st is an  absolute constant. 

We now effect the  determination of K~ by forcing (5.3a) 
to comply with the outflow condition  (5.2);  this  makes 

sin  K2L=sin K~(L-Ax) ,  

the  roots of which are given by 

K~=(~?-$)T/(L-+AX) 
(l=l, 2, 3, . . .) p-1). (5.4) 

There  remains only the  demonstration  that,  with K Z  as 
in (5.4), the  representations  in (5.3) are complete. This 

rn 8 thorough study of the finite-difference primitive and wave equstions;kihapn 
[4] has pointed out that when C-1 in (4.71, there  are no truncation errors. 

tFor the conditions of “&st-order  extrapolation’’  (case I11 in the previous work),’uu- 
coupling the lattices does not completely remove the instability, but eliminates its ex- 
ponential character. 
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hinges upon the following identities: 

where x({) and X ( W )  signify  values of x at  r-points and  at  
o-points,  respectively, the 5-sums being taken  over  internal 
points only. The first set of identities  leads  to  the 
inversion 

sl(t>=2(p-+)-’t=t(z,t) sin K 1 4 t )  
z(f) 

wz(t)=2(p-$)”C[W(5,t ) -Q]  COS KzZ(W), 
x (0) 

and the second set insures that when returned  to (5.3), the 
latter expressions of cz ( t )  and w l ( t )  do, in  fact,  reproduce 
{ (x$)  and w(x , t ) .  

For  the  determination of Q in (5.3b), we note  that, in 
view  of (5.4), cos K ~ ( L - $ A Z ) = O ;  hence,  from  (5.3b), 

i2=W(L-$A5,t), 

which means that at the  point  adjacent  to  the outflow 
end, 6.1 is  constant  in  this scheme. This completes the 
construction of the  fundamental modes associated  with 
the “uncoupled” outflow condition (5.2) ; evidently,  these 
modes are  neutral. 

An alternative proof of stability  can be  given in  terms 
of the  “semi-discrete”  equation 

(5.5) 

obtained from (4.4) by replacing the space  derivative,  but 
not the time  derivative,  by  a difference quotient (see 
Platzman [SI). Let l ( t )  denote the column vector  formed 
from the p - 1  values of l(z , t)  at internal  points,  and 
define the  matrix 

r 2 - l  0 . 
-1 2 -1 

0 -1  
A= 

- 1  

\ 0 . . .  0 

. .  

2 -  

-1 

0 ’  

0 

- 1  

1, 

Then. with the  boundary condition (5.2) at x = L  and 

t ( O , t ) = O  at  x=O, the  equation satisfied by { ( t )  is 
3 

This ha.s fundamental  modes exp (=tic$), where 

. C2= ( U / A X ) ~  A. 

Clearly, the semi-discrete  system  is  neutral if and only 
if the  latent  roots of A are  real  and  non-negative. 

Now consider the fully-discrete system. formed from 
(5.6): 

This  has  fundamental  modes exp (f iDt), where 

4 (sin $DAt)2= a2A= (At)2C2. (5.7) 

Evident,ly,  the  fully-discrete  system  is  neutral only if the 
semi-discrete  system is neutral. We now make the 
observation that  the semi-discrete  system (5.5) or (5.6) 
is precisely that which describes the transverse  vibrations 
of a  discretely-loaded,  stretched  string  with one end fixed 
and  one  end  perfectly  free  (with  respect  to  transverse 
displacements). The mass of the  string is assumed 
negligible, and  the  loading  consists of p - 1 equal  loads 
each of which is concentrated at an interior  t-point 
x / A x = l ,  2, 3, . . . , p - 1 .  The end at  s=O is fked, 
while a t  x = L  we have a free  end which is  not  loaded; 
the condition (5.2) then expresses the requirement that 
the  lateral component of tension  must  vanish at  x=L. 
Since the modes for the loaded  string  are  neutral (as is 
well known), it follows that  the  latent roots of C are  real; 
hence,  from (5.7) we see that (for sufficiently small At)  
the  latent roots of D also are  real. 

The preceding  analogue  permits some insight  into the 
nature of the  instability  associated  with  the “coupled” 
outflow condition. In  the semi-discrete  system, we have 
in  general 

but  the “coupled”  condition  is 

so we get  the following end condition  for 1: 

For  the  stretched  string,  loaded  in  the  manner  previously 
described,  with  a  free  end at  x=L, this condition may  be 
interpreted  as expressing the balance (at z=L) between 
the  lateral component of tension and  a frictional  resistance 
proportional to  the displacement velocity of the end of 
the  string along its support. Such a system  clearlv is 
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(6.2a) 

(6%) 

FIGURE 4.-The distribution of f- and w-vorticities in  the x ,  y-plane. 

damped. The modes of the corresponding  fully-discrete 
system  therefore  are amplified. 

6. THE 2-DIMENSIONAL  VORTICITY  EQUATION 

In figure 4 is shown the  appropriate  spatial  distribution 
of {- and  @-vorticities  for the two-dimensional vorticity 
equation 

The w-vorticities are,  as  before,  out of phase  with  the 
{-vorticities, by  an  interval $At in time  and $ A s  in space 
(note that figure 4 gives the  distribution of these  variables 
with  respect to x and y, but  not t ) .  One may therefore 
identify two distinct  lattices:  one  in  which  the f- and 
w-fields are defined respectively a t  t /*At=O,  2,4, . . . and 
1 ,  3, 5, . . . ; and  the  other in  which the f- and o-fields 
are defined respectively at  t / $ A t = l ,  3, 5, . . . and 
0, 2, 4, . . . - In spite of the  nonlinearity of (6.1), it  
is possible to  formulate  the difference equations  in  such  a 
way that  the two lattices  remain  permanently  uncoupled, 
as will  now be explained. 

Assuming the velocity  components to  be  derivable  from 
a stream  function,  equation (6.1) may  be  written  as  a 
pair of equations 

where x is the  stream function  for the w-vorticities, and 
$ is the  stream function  for the  f-vorticities: 

w=VZx; t=02#. (6.3) 

The procedure  for  replacement of (6.2) by appropriate 
difference equations  is  rather  apparent  and need not be 
elaborated  here. In  connection  with (6.3) however, two 
procedures may  be mentioned. If the x,y-axes  and the 
interval * A s  are used in the finite-difference Laplacian 
(to  obtain  the usual  five-point  formula),  then concurrent 
values of l ,  w ,  $, and x are  required,  and  in  this way the 
two lattices would be coupled every  time  a  relaxation is 
performed (that is, when (6.3) is  solved). On the other 
hand, if axes inclined 45 degrees to  the x, y-axes are used, 
together  with an  interval aAs&, then coupling of the 
lattices  is  avoided. 

Numerical  solutions of the  barotropic  vorticity equa- 
tion  have  been  obtained  in  the  manner  just described, in 
connection  with an investigation of the prediction of 
hurricane  movement, and will be  reported elsewhere by 
Birchfield. 
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