SEPTEMBER 1961

MONTHLY WEATHER REVIEW

357

DISTRIBUTIONS OF WEEKLY AVERAGES OF DIURNAL TEMPERATURE
MEANS AND RANGES ABOUT HARMONIC CURVES'

CHRISTOPHER BINGHAM

The Connecticut Agricultural Experiment Station, New Haven, Conn.
[Manuscript received April 11, 1961]

ABSTRACT

The distributions of weekly averages of diurnal temperature maxima, minima, means,
and ranges are found to be non-normal, although the errors in using the normal distribution

do not impair the usefulness of derived estimates of probability.
the variance are estimated by harmonie regression.
abilities for any week from as few as five parameters.

The central tendency and
This enables the estimation of prob-
A three-term harmonic curve fitted

to individual years is adequate to deseribe the course of temperature.

1. INTRODUCTION

Useful probability statements about the occurrence ol
diurnal temperature means or ranges cannot be made
without knowledge of the form of the distribution of the

values and a practicable means of estimating the param- -

eters which specify the distribution. The present paper
explores the distributions ol the weekly average of the
daily mean temperature (=% (max-+min)) and the
weekly average diurnal range, as well as the related dis-
tributions of the weekly average diurnal maxima and
minima.

2. HARMONIC REGRESSION

The fundamental tool which will be used in this develop-
ment is harmonic regression. It is well known that any set
of data, @), @, . . ., &y, at equally spaced times ¢, ¢, . . .
t,, may be exactly fitted by a series of the form

n
y=ay+>, A, cos (pt—¢,), t measured in degrees. (1)
p=1

This is the sum of cosine curves, cach with semi-amplitude
A, and time of maximum t=¢,/p. Equation (1) can also be
written in the form used herein,

Y=g+ (a, cos pt-+b, sin pt) (2)

p=1
where

a,=A4, cos ¢,; b,=A4, sin ¢,; and a2+ b2=A2 p=1,.. .n.

()

Such a sum will be called an n-termed Fourier series, and
(a, cos pt+-b, sin pt) will be called the pth term. In many

1 This work was supported in part by funds of a regional project in agricultural clima-
tology, NE-35,

applications it is found that very few terms are needed
to give an excellent fit to the data, so that the residuals
from the curve are of the same magnitude as the basic
errors of observations. For instance, Craddock [6] ob-
served that over much of the Northern Hemisphere, a
two-term series provided an adequate fit to the mean
monthly temperature. He did not, however, examine any
variability between years of the coeflicients of the two-
term curve which best fit each year. Without this knowl-
edge, a proper error term for significance tests for the
reality of given terms is not available. Bliss [4] remedied
this deficiency, describing a technique paralleling the
standard analysis of variance for the fitting of orthogonal
polynomials.

The mathematical model underlying Bliss’s analysis is
the following. Each observation for the jth unit of time
in the ith year, y;;, is considered as a sum

?/ij:<ao+aio)+<al+ai1) cos tj+(bl+ﬁil> sin t;
+((lz+ai2) cos 2tj+(bz+ﬂi2) sin 2t;
+ ... F(atai) cos vt (b4 Bi) sin vt tey;  (4)

where t;=j7/k 360°, j=0, 1, 2, . . ., k—1 (if the units are
weeks, k=52). The ¢; are independently distributed
normal deviates with zero means and common variance o2
The vectors (ay, as, . . ., @i, B, Ba, . . ., Bi) are inde-
pendent observations from a 2r-+1 variate multivariate
distribution with zero mean vector. This model covers
both the case of a single curve applicable to every year
(when the variances Viag)=V(ay)= . .. = V(845 =0),
and the case of random variation of the curve from year
to vear. In the latter case the variance components of the
coefficients enter into the variance of ¥, For details on
the analysis of variance see Bliss’s [4] bulletin. His
analysis is designed to test several hypotheses. The
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simplest such hypothesis is that a2-+b;>=0, for particular
values of 7. One can also test the adequacy of » terms to fit
the data, and the reality of the between years variance
components assoclated with the coeflicients. Significance
tests are made using the F-test for variance ratios.

It should be pointed out that a certain arbitrariness
must occur in the above model. This is the choice of a
zero point from which we measure the time ¢t.  To illus-
trate this, let us suppose that

Yir=(@oFasp) (a1 +au) cos t,4 (by+B:) sin 1
+ (astays) cos 28,4 (b,+B2) sin 21,
Then if 0<0<(360°, ¥ can equally well be expressed by
Yiy=(@o+au0) + (@' +ay’) cos t;/ +(b/+By") sin t;
+(ay’ tap’) cos 2t 4+ (b +8:27) sin 2¢,7,  (5)
where t,/=1,+06 and a,"=a, cos 0—b, sin 6
b,=a, sin ©6-+b; cos O
a,’ =a, cos 20—b, sin 20

by’ =a, sin 26 +b, cos 20,

with a similar relationship holding for the o’s and the
B’s. If one fits a curve of the form (5) to data, exactly the
same curve 1s obtained as when the more conventional
form 1is fitted. Tt is easily seen that the variance com-
ponent contributed by «; will, in general, be different from
that contributed by «,". However, the sum of the com-
ponents for a given term will be unchanged. That is,
Vi) +V(B)=V(a)+V(8,/). Further the semi-ampli-
tudes A; will be unchanged by the change of origin. Since
the analysis of variance does not separate the two com-
ponents of each term, this is sufficient to ensure that the
analysis is invariant under any choice of origin.

Estimates, ax*, aa®*, . .., b,% of the coeflicients,
(@t aiy), (@y+aq), . . ., (b,4+84), for the ith year are
easily made as follows.

1 k=t
ap* =7 Z Yis
k&=

- (6)
2 i
aim*:]—f ‘Zo Yi; cos mi;
=
9 k-1 . i
bint=7 > yysinmt;, m=12, ..., r; t;==2360°
k =0 k
Estimates for the mean coeflicients aq, a;, . . . , b, are

obtained by averaging the abovea;, *’sand b, *’s over vears,
These are least squares estimates, and hence if the assump-
tions stated are fulfilled, they are the best unbiased esti-
mates; further, if the error component is normally distrib-
uted they are also maximum likelihood estimates. The
estimates remain unbiased even when the restriction of
independence of residuals is removed.

MONTHLY WEATHER REVIEW

SEPTEMBER 1961

Using the estimates a,™*, . . ., a,% ba*, ..., b,*
o .
one can compute an “‘expected” value, 9 4, for the jth week
of the ith year by

Y= al cos t4-b% sin ¢4 . L.
+a¥, cos rt;+bf, sin rt;.  (7)

Adequacy of the model is seen in the deviations

diy=Yi;— s (8)

of observed values [rom their “expected’” values. These
deviations will occasionally be referred to simply as d,
without subscripts. Thus the use of this model produces
two additional arrays, d;; and 7, similar in form to the
original data. Any operations or computations that may
be performed on the original data, y;;, may be performed
on the dy and on the 4. For example, to the sample
variance for the jth week,

where fis the number of years in the sample, corresponds
the variance of the deviations dy; for the jth week.

s [Ha- (Ba)]

Bliss applied this technique to a 14-year record of
monthly mean temperatures at New Haven, Conn. His
findings confirmed those of Craddock: A two-term series
accounted for more than 97 percent of the observed sum
ol squares. It is well known that the variance of the
temperature is higher in winter than in summer. Bliss
found that a simple sine curve fitted to the log-variance
of monthly mean temperatures adequately described the
vearly trend of this variance. Concurrently I applied
the technique to the monthly averages of the diurnal
temperature range for the same period at New Haven [3].
Both the first and second terms of the regression curve
were significant. The trend of the range was quite
unexpected with maxima in May and October and
absolute and relative minima in January and July,
respectively. The distributions of both the mean and
the range were normal for all practical purposes, although
there were very slight indications of systematic skewness.

(10)

3. METHOD AND DATA

To earry out the laborious calculations for the application
ol the technique to weckly averages of temperature
maxima, minima, means, and ranges, electronic data
processing equipment was necessary. A program was
written for the IBM 650 with the following functions.
From cards containing weekly sums or averages of the
maximum and minimum temperatures, coeflicients a,,*
and b,,*, p=1, 2, 3, of the three-term Fourier curve which
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best fitted the data (maximum, minimum, mean, or range,
depending on a coded instruction card) of each individual
year were computed. Simultaneously sums ol powers
needed for moments up to the fourth were accumulated.
From these “annual’ coefficients the cxpected values
¥ for each week were computed. In addition, the raw
moments of the deviations, d;;=y,—¥y, Were accumu-
lated, 7,; being the observed and y,; the expected values
for a given week and year (equation (7), (8)). Finally
the machine calculated an analysis of variance. l.ater it
was found useful to write a program to cenvert raw
moments to moments about the mean and compute

glzkg/k23/2 ‘(L“d 92:k4/k§ (1 1)
where k;, 1=2, 3, 4, are Fisher’s k-statistics [8]. I also

found it advantageous to write a program to carry out a
harmonic analysis of unreplicated data and to synthesize
curves {rom the estimated coeflicients.

The complete set of programs was carried out on the
data from only two stations, Storrs, Conn., and Keedys-
ville, Md. both for the years 1926-56. In addition the
mean and the range were studied for Uniontown, Pa.,
Eau Claire, Wis. both for 1926-56, and lor Easton, Md.
for two independent periods, 1896-1926, and 1926-56.
These last will be referred to as Easton I and Easton 1T,
respectively.  The climatological vear starting Mareh 4
and omitting February 28 and 29 was used throughout.

4. CENTRAL TENDENCY

The mean squares [rom the analysis of variance for the
harmonic regression fitted to the maximum, the minimum,
the range, and the mean at Storrs are given in table 1.
The sums of squares may be easily calculated using the
degrees of freedom. The correct F-tests were applied
according to Bliss [4]. The 30-vear averages ol the mean
and the range for Easton II together with the average
harmonic curve are shown in figures 1 and 2 respectively.

Maximum, Minimum and Mean.—As was expected, the
first (sine curve) term ol the Fourier series accounted for
approximately 90 percent of the total sums of squares for

TaBLE 1.—Mean squares from analysis of variance of harmonic
regressior. applied to weekly averages of diurnal temperature mazima,
minima, ranges, and means, Storrs, Conn., 1926-1956

Mean squares
Row Source of variation D.F.
Maximum | Minimum Range Mean

1 | Between years_________ 29 *113. 649 *73.631 165. 891 180. 546
2 | 1st term_ 2 |1216080. 805 [1173223. 360 12631. 135 | 1193994. 295
3 2 1494. 45 12.245 1578. 350 96. 540
4 2 14.715 *227. 890 I 45 47.425
5 45 *35. 370 749. 283 *15. 696 132.424
6 | 1st term X year___ _ 58 172.379 151.113 122. 515 166. 064
7 | 2d term X year__ - 58 143. 090 132.114 123.743 132. 081
8 | 3d term X year__ - 58 *36. 092 *29.750 *14. 552 129. 283
9 | Residual ______________ 1305 25. 868 23. 206 11. 424 21.105

*P<.05

1P <0.01.

1P <0.001.
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Frcrre 1.—30-year average of mean weekly temperature and the
fitted harmonic curve, Easton, Md., 1896-1926 (designated I),
and Easton, Md., 1926-1956 (designated II). Week 0 begins
Mareh 1.
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Frcure 2.—-30-year average of weekly average diurnal temperature
range and the fitted harmonie curve, Kaston II, 1926-1956.

the maximum, the minimum, and the mean. The fit
appeared excellent. In a few cases the second or third
terms were significant (i.e., larger than one could expect
from chance variation under the null hypothesis) but in
terms of the percentage of sum of squares accounted for
(<<<1 percent) they were trivial. However, the inter-
actions of terms by vears all were significant and for the
second and third terms were more important than the
average effect of these terms. This indicates that the
shape of individual years cannot in general be adequately
described by a simple sine curve, despite the good fit to
the averages.

An interesting feature was the consistency over a wide
area of the departures of the average values for the period
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1926-1956 of the maximum, minimum, and mean f{rom
the average Fourier curve. The magnitude and direction
of the deviations for all four eastern stations were almost
indistinguishable. In addition, at Keedysville and Storrs,
the pattern of deviations of the mean was almost perfectly
reproduced by the corresponding deviations of the maxi-
mum and the minimum. The time of year when the fit
was least good and when the bulk of the sum of squares for
scatter arose was the period from mid-December to mid-
February. The last two weeks of December were con-
siderably below the fitted curve, January above it, and
February again below 1t. Although differing in detail
the same general pattern of winter temperatures was
observed in both independent 30-year samples from
Easton, Md. (see fig. 1). The warm January is reminis-
cent of the fabled ‘“‘January thaw.” However, the date
of the ‘“‘thaw’” is reportedly well defined at January 20-23
[11] [14]. This does show up clearly in the Easton 1
record but is not visible in the Easton 1I record or at other
stations analyzed for the later period. This casts doubt
on the reality of this “singularity,” especially in view of
the occurrence of maximum variability in January. No
other such similarities in deviations are apparent in both
records from Easton.

Range.—As shown in figure 2, the range followed the
pattern uacovered in the preliminary analysis of the
monthly data at New Haven {3]. We observed pro-
nounced maxima in carly- to mid-May and in mid-
September with a summer relative minimum consider-
ably above the winter minimum. The summer dip was
least pronounced at Keedysville and Eau Claire but was
clearly present in all records, including both independent
Easton records. There were few, il any, recognizable
similarities in deviations from the fitted curve between
the stations. However, at all stations, the first two terms
of the Fourier series were highly significant, with the
third of lesser importance although still significant. The
interaction of terins by years was quite uniformly signifi-
cant. This, of course, indicates that there is considerable
variation between years in the shape of the yearly course
of diurnal range. Of considerable interest is close agree-
ment of the phase of the first term (fundamental sine
curve) with that of the sun, This apparently reflects the
close relationship between the diurnal range and the
energy input. That this relationship is not overpowering
is, however, clearly shown by the spring and fall maxima.
Despite first guesses that these maxima were corollaries
of clearer skies in both spring and f{all, sunshine and
cloudiness records showed that in fact the spring period
tended to be cloudier than the summer, although the high
daytime gains and nighttime losses of radiation due to
clear skies in the fall remain an acceptable explanation for
the autumnal maximum. An examination of the daily
temperature record for Mt. Carmel, Conn. suggested a
possible explanation. It was observed that there was a
considerable number of days when the daytime tempera-
ture went very far above the nighttime minimum but
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returned to previous levels after sundown. In the late
spring, the annual course of insolation is considerably
ahead of the course of soil temperature, and hence, in
general, ahead of the course of nighttime air temperatures.
This makes it possible when conditions are right, for the
temperature to rise sharply in the daytime and yet return
at night, as we observed, to about the same level as the
previous night. This behavior is corroborated by a com-
parison of the variances (between year and within year)
of the maximum and the minimum temperatures. During
these spring months the variance of the maximum is
definitely greater than that of the minimum.

5. DISTRIBUTIONS

The analysis as discussed to this point has provided an
efficient method for estimating a central tendency or
location statistic for the distributions of temperatures
and temperature ranges. Instead of 52 individual means,
we have as few as three coefficients (for a sine curve)
which give the location of the distribution {or every week.
However, for statements of probability, knowledge of the
shape of the distributions is required. If it can be shown
that the distributions are normal, or Gaussian, then the
mean and the variance completely specify the distribution.
On the other hand, if the distributions are non-normal,
higher moments are necessary to specify or to approxi-
mate them. In addition, for the analysis of variance to
be fully applicable, several assumptions should be met:
The deviations of each observation {rom the theoretical
regression curve for the year should be (i) normally dis-
tributed, (i) homoscedastic (i.e., ol equal variance), and
(iii) independent. To examine the distributions of the
observations and to test the first and second ol these
assumptions, moments were computed and the following
procedure carried out. The sample variance for each
week, s;2(y), 7=0, 51, (equation (9)) was computed
from the observed values under consideration, to be
referred to as y, the maximum, minimum, range, or mean.
I also computed ¢:(y) and g¢.(y) (equation (11)) as
measures of skewness and kurtosis. In addition, T cal-
culated the same statistics s,2(d), ¢:(d), g2(d) for the dis-
tributions of the deviations, d, of the observed values
from the best fitting annual curves (see equation (10) for
example). This process gave 52 values, one for each week,
of the sample statistics just mentioned, for each of the
two related distributions.

Variance.—The observed variance of the maximum and
the minimum for Storrs and Keedysville changed smoothly
over the year, as did the variance of the mean for all
stations. Corroborating the previously mentioned tend-
ency, the variance of these variates was considerably
higher during the winter months than during the summer,
with a reasonably smooth transition between the extremes
(see figs. 3, 4, 5). Unfortunately {or strict fulfillment of
the conditions of the analysis of variance, the variance of
the deviations, d, about the individual curves showed the
same pattern, although to a reduced degree. In the case
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Ficure 3.—Sample variance of weekly average diurnal maximum
temperature and transform of the sine curve fitted to the log
varianee, Storrs, Conn. 1926-1956.
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Frcure 4.—Sample variance of weekly average diurnal minimum

temperature and transforms of the sine curve (solid line) and the

two-term Fourier curve (dashed line) fitted to the log variance,
Storrs, Conn., 1926-1956.

of the range there were indications that the variance
followed a double maximum pattern. Hardly visible at
Storrs, it was more apparent at Keedysville, and still
more so at Uniontown. Furthermore, it could be dis-
cerned in both independent KEaston tecords. (The
observed variance of the range at Uniontown is shown in
figure 6.)

Since the trends in the variance were pronounced, we
summarized the pattern by applving to the variance the
same techniques of harmonic regression previously used
on the temperature variates themselves. In order to
minimize the non-normality of the distribution of the
variance, it was transformed to its logarithm before the
analysis was carried out [2]. As Bliss indicated, the an-
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nual course of the log variance of the mean could be ap-
proximated by a simple sine curve. The same was true
for the log variance of the maximum temperature. In
both cases neither the second nor the third term was
significantly different {from zero. However, the analysis
of variance indicated that, for the minimum, the higher
terms were significant. The second term component was
quite pronounced at Storrs while the third term was im-
portant at Keedysville, although at both stations the sine
curve was clearly the dominating feature. The range
exhibited a markedly different character. The log vari-
ance showed a significant second term trend, but little
evidence of any single wave. For all four variates, when
the deviations, d, about the annual curves were considered,
the analysis showed that the I values for all terms de-
creased although the same relative importance of terms
seemed to be the rule.

Correlations Between the Variates.—Of related interest
to the course of the variance of the individual variates is

(°F)*
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0 10 20 30 40 50
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Ficvre 5.—8ample variance of weekly average diurnal mean tem-
perature and transform of the sine curve fitted to the log variance,
Storrs, Conn., 1926-1956.

(°F)?

5071
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Firaure 6.—Sample variance of weekly average of diurnal tem-
perature range and transform of the two-term Fourier curve
fitted to the log variance, Uniontown, Pa., 1926-1956.
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the course of the correlation between them. Because the
maximum-minimum and the mean-range coordinate sys-
tems are orthogonal, the correlation between the average
maximum and the average minimum temperatures con-
tains all the available information on the various correla-
tions. Although not computed directly in our original
program, this correlation is easily ecalculated from the
variances of the maximum, minimum, and range as

2max+82mln_ 82range
28max X Smin

r (max, min)zs (12)

This calculation was carried out for the two stations,
Keedysville and Storrs, for which all these variances were
available. At both stations, the correlation r was always
positive, reaching a maximum in winter and a minimum
in summer. Like the variance of the mean, it followed a
fairly smooth trend between these extremes. To obtain
a quantitative description of its seasonal course we trans-
formed r to z=tanh~'», in order to stabilize its variance
and minimize the non-normality of its distribution [9]
and carried out a harmonie regression on each station.
The variance about a regression curve fitted to z derived
from samples of 30 is theoretically 1/27=0.037037. We
can insert this as an added line in the analysis of variance

with infinite degrees of freedom. This can be used in

place of the ordinary error row in an analysis of variance
of replicated data to test the adequacy of the fit and the
reality of the regression. For both Storrs and Keedysville
the scatter of z about a sine curve, when tested in this
manner, was not significantly different from the theoreti-
cal variance (P2>0.2, F<1.2), indicating there was no
removable systematic variation in the residuals about the
curve. The sine curve was highly significant (P<0.01).
Thus we may conclude that the transform, z, of the corre-
Iation between the weekly averages of maximum and
minimum temperatures follows a sine curve. The only
apparent regular departure from the sine curve is in April
and early May when, at Keedysville, there were eight
successive weeks when the observed correlation was less
than the “expected’” correlation, calculated from the sine
curve. At Storrs a similar feature was observed for the
same eight weeks, with the exception of one week in
which the observed correlation slightly excceded the “ex-
pected.” In addition to this, there were other similarities
between the two stations in the observed correlations.
This is a further reflection of the previously noted similari-
ties in the temperature records at quite widely separated
stations (340 miles).

One might hope that, by using the “expected” values
of r(max, min), s’max, and sy, computed from the sine
curves fitted to their transforms, one could recover the
curve describing the course of the variance of the range
by the formula,

(13)

SZrangeZSZmax+S2mln— 2rsmax X Smin-
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I hoped in this way to obtain a purely mathematical
explanation for the behavior of s%,.,,, based on simple
assumptions concerning the behavior of the other second
moments. The results, however, are not convincing.
For Storrs, the curve of %5, computed in this way
is far too flat, although its only notable feature, a peak
at week 10, does reflect a similar peak in the observed
variance. At Keedysville, where the observed variance of
the range displayed a pronounced double maximum pat-
tern, I found only a single peak at the time of one ob-
served maximum, with a point of inflection at the less
important of the two minima.

Homoscedasticity and Independence of Residuals.—The
above analysis has made one thing clear: Our assumption
ol hooscemdasticity is not fulfilled. Although the mathe-
matical model postulated implies some sort of a periodic
form for the variance of the actual values, y, the variance of
the deviations, 4, from the annual curves should be con-
In the case of the average diurnal range this is
nearly true. However, the other three variables are far
from homoscedastic. In any case, the estimates of the
regression coefficients are still unbiased estimates of the
population values. It is difficult to assess the effect of
this upon the tests in the analysis of variance. According
to Cochran [5], the F-test for non-regressive designs is
sufficiently robust as to be not misleading, although the
more general case is not covered.  Since, for the mean and
the two extremes, the sine curve predominates, we can
clearly accept the adequacy of the overall fit, although the
tests cannot be considered exact. Since the variability
of the variance of the range is far less prominent and regu-
lar, the tests should be less affected by heteroscedasticity.

Of equal or greater importance, perhaps, although more
difficult to assess, is the possibility of dependent residuals.
Direct tests for this are available [1] but laborious to
apply and, as they stand, are not readily applicable to our
computing scheme. Bliss [4] states that the technique of
fitting separate curves to each year will have the effect of
removing serial correlation between weeks, and leaving
substantially independent residuals. From inspection of
individual years, the observed residuals appear to be ran-
dom. On the assumption of independent residuals, it
follows that the moments for each week, as computed
from the residuals, are independent and thus also ¢
and ¢, computed from these moments are independent,
Serial correlation in these should tend to inflate the
significance of trends in these statistics. Thus we would
expect that il the residuals are independent, the F values
in tests for the reality of regression curves fitted to the
annual course of g, and ¢ should be lower for the distribu-
tion of the residuals than for the distribution of the raw
observations. This, as we shall see, was observed and can
be considered evidence of independence. However, no
conclusive test has been found to clarify this point.

Tests for Normality.—We now examine the assumption
of normal distributions for our variates. Being able to
work with normal distributions is desirable for three

stant.
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reasons. Firstly, such normality is assumed in our use
of variance ratio tests in the analysis of variance, although
it has been shown [5] that departures from normality, if
not extreme, have little effect on the F test. Secondly,
the normal distribution is known and easy to apply.
Thirdly, if a distribution is normal all information about
the values of the parameters defining it is subsumed in
the sample mean and variance [7]. Furthermore, the
powerful central limit theorem, applicable because we are
considering averages of several observations in our
distributions, tells us that the distributions approach
normality.

A further consideration is also important: the use to
which the probability statements derived from the
distribution will be put. If extreme accuracy at all levels
of probability is required, for instance, we must be
extremely stringent regarding our tests of the distribution.
On the other hand, in practical climatological applications
we are not interested in, for example, the difference
between a once-in-20 and a once-in-25 event. Even if
tests show that almost certainly there is some departure
from the normal curve, we may accept a normal approxi-
mation if the errors in probability estimated from our
approximation do not impair the usefulness of the
estimates.

As measures of departures {rom normality I chose, as
previously mentioned, ¢,=k;/k,*/? and ¢,=k,/k5 where
ki are Fisher's k statistics. Departure ol these from zero
is indieative of non-normality. Both statistics are
asymptotically normally distributed with mean zero and
variance depending, in the null case, only on the sample
size. Skewness or assyvmmetry is measured by ¢, while ¢,
measures kurtosis. For ease in machine computation, g,
was chosen in prelerence to

_2le—1]

8

a

recommended by Geary and Pearson [10]. The ¢,’s and
g2's can be tested in two ways. First, compare the
observed distributions of the ¢’s with those expected for
samples drawn from independent normal populations.
The ordinary significance test using a standard error is
of this type. Second, examine the yearly course of ¢, or
g2 for meaningful patterns. An improbably regular
pattern is as clear evidence of the presence of non-zero
skewness or kurtosis as are high values of ¢, and g..

The chief obstacle to the first type of test is our igno-
rance of the exact distributions of ¢, and ¢, under the
null hypothesis. It is known that for samples as small as
30, such as concern us here, the distribution of g, is
not far from normal while that of g, is strongly positively
skewed. When the cumulative sample frequencies for
the ¢’s at Keedysville were plotted on probit paper, the
curves reflected this expectation. The distributions of
the g;’s were quite linear indicating approximate normality
while the g»’s exhibited a concave upward curve character-
istic of positively skewed distributions.
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TArLE 2.—Number of exceedences of the 1st, 5th, 95th, and 99th
percentiles in 52 values of g1(y) and g,(d) caleulated from weekly
averages of diurnal temperature maxima, minima, ranges, and
means, Keedysville, Md., 1926-1956

ay) g1(d)
>upper | <lower Total >upper | <lower Total
5 percent | 5 percent 5 percent | 5 percent
Maximum 4 1 5 1 1 2
Minimum _ 2 3 5 2 2 4
3 1 4 2 3 5
5 1 6 1 0 1
>upper | <lower Total >upper | <lower Total
1 percent | 1 percent 1 pereent | 1 percent
Maximum..._.________ 1 0 1 0 0
Minimum___ 2 2 4 0 0 0
Range_____ 0 0 0 0 0 0
Mean.____._____._____ 1 0 1 [ 0 0 0

Although the exact distribution of ¢ is unknown,
Geary and Pearson [10] have given approximate extreme
perceniage points. A comparison of the observed {re-
quencies of g; bevond these points seemed the optimal
procedure. Since these percentage points are not avail-
able for g, [or sample size less than 100, this comparison
was not possible for g,. In table 2 are given the number
of times the upper and lower 5 percent and 1 percent

Jevels for g, are exceeded for the 52 weekly distributions

of the observations, y, and the residuals, d. We see that
the agreement is as good as could be expected for the
distribution of the deviations, d, about the annual curves
although there are improbably few (i.c., no) values beyond
the 1 percent point. However, in the distribution of the
observations, y, themselves, the most striking feature is
the appearance of four ¢; (¥)’s beyond the 1 percent point
among the 52 ¢’s derived from the minimum temper-
ature, Further, the upper 5 percent point of ¢,(y) for
the maximum and the mean is excceded too often. Thus
a certain degrce of non-normality is indicated in all the
original variates except the range. There is, however,
no indication that this is true for the deviation from the
annual curves, d. This last result is important since it is
assumed in our mathematical model.

Clearly, the above tests lose much of their validity if
there is appreciable serial correlation between weekly
values since this makes the g,’s serially correlated. This
affects the shape of the observed distribution of the 52
values of ¢,(y) lor each variate. Thus the second type
of test referred to above may be more applicable. This
can best be done by fitting a regression curve on time to
the computed statistics to uncover any significant pattern
over the year. If the regression accounts for a significant
part of the variation, it indicates a real departure from
the expected values of zero. Because of the general
robustness of the F-test, the departure of the distributions
of the g’s and g’s from normality should not invalidate
tests of significance of a regression curve. Accordingly,
as previously mentioned, a three term harmonic curve was
fitted to each of all available sets of ¢g/’s and g»’s, with
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somewhat mixed results. For the distribution of d there
are no more F values significant at the 5 percent level
than one would expect, with the exception of ¢, for the
maximum temperature. For this, the second term for
Storrs is significant and at Keedysville both the second
and third terms are significant, although in both cases
they are quite small. One may conclude, however, that
there was no appreciable systematic skewness or kurtosis
in the residual variation, whether one considers the
mean, range, maximum, or minimum.

When we examine the observations y, there is a con-
sistent pattern among the ¢,(3)’s. For four out of the
six records analyzed, including Easton II, the second
term of the curve fitted to the course of ¢,(y) for the mean
temperature was significantly different {rom zero. In
the fifth record, Easton I, the amplitude of the second
term was more than twice as large as any other, although
not quite significant. Eau Claire, on the other hand,
demonstrated a strong first term and small second and
third terms. This discrepancy may possibly be traced to
climatic differences between the Atlantic coastal and the
Lake States. The same double maximum pattern was
even more apparent in ¢;(y) for the minimum temper-
atures. At both stations analyzed, Storrs and Keedys-
ville, the second term was highly significant, an almost
identical pattern emerging. There appeared to be a
tendency toward positive skewness in the fall and
especially in the spring and negative skewness in the
summer and especially in the winter.

We conclude that the distributions of the deviations
d from annual curves are Gaussian for all four variates,
while the observations y of the minimum and the
mean have a skewness that changes seasonally. Since
this pattern of skewness is most pronounced in the
minimum and since the mean, as defined herein, i1s in
part derived {rom the minimum, the primary pattern
of non-normality is likely to be in the distribution of the
minimum temperatures.

Although the tests discussed so far have not indicated
any real departures from normality in the distributions
of the range and the maximum, one further test placed
in doubt the normality of the distributions of these
variates, too. By the central limit theorem, the dis-
tribution of averages of independent g’s or g¢,’s should
be approximately normally distributed with zero expec-
tation and variance 1/n times the variance ol a single
value. Thus if we consider the mean §; of the 52 values
of g, i=1, 2, we can treat it as a normal deviate with
variance 1/52 V{(g;). These then can be compared with
the percentage points of the normal distribution. Any
means outside, say, the 5 percent level would indicate
a significant average departure [rom normality. Since
we have no a priori knowledge of the direction in which
deviations from the null hypothesis should occur, the
proper test to use is the two-tailed comparison. When
this test was carried out, no average departures from
zero were found for cither the ¢,(d)’s or the g¢.(d)’s of
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the distributions of the deviations, d, for any of the four
variates studied. Neither were there significant non-
zero average departures in the ¢.(y)’s. However, both
the maximum and the range displayed definite signs
of positive average skewness among the 7’s. At both
Keedysville and Storrs §,(y) surpassed the upper 5 per-
cent level and, in the case of Storrs, the upper 1 percent
level.  For the range, all except ome station, Storrs,
with §,(y)=—0.0041, showed some positive skewness,
with two records, Easton I and Uniontown, surpassing
the 1 percent and 5 percent levels respectively.

Conclusions Regarding Distributions.—First, the varia-
tion of all four variates about the annual harmonic curves
is Gaussian. This is important from a theoretical point
of view, since it increases our faith in the underyling
model. However, because we cannot predict the shape
of the yearly course of the variate, this knowledge is
of little use from a practical point of view. Second, we
have quite clear indications ol skewness but not kurtosis |
in the distributions of all four variates. In the case of
the range and the maximum temperature, the average
skewness is consistently and, in some cases, significantly
positive. On the other hand, although they display
no average skewness, the distributions of the mean and
the minimum have skewness that varies systematically
over the year. Thus, [or completely exact climatological
statements of probability, normal assumptions will not
be sufficient.

In theory one should try to find the exact nature of
the distribution for each of the four variates. In the
present instance, this could be more misleading than
any assumptions of normality. First, there are insul-
ficient data to establish any distribution as being correct
without doubt. Second, the variation in skewness, at
feast for the mean and minimum temperatures, suggests
that the “correct” distribution may vary seasonally.
This would greatly increase the difficulty of applying
any distribution. An alternative which is more approach-
able 1s the use of the third and fourth moments in fitting
ad hoc distributions to the variates using either one or
several of the Pearson curves or the Edgeworth approxi-
mation. Since we have no evidence of the departure
of the fourth moment from the value expected for the
normal distribution, the third moment, as reflected in
¢1(y), should be sufficient. Further, due to the large
sampling variation in ¢, (y) resulting from our use of small
samples, our best estimate of the population skewnesses
should be the values caleulated from the fitted periodic
regression curve, or in the case of the maximum or the
range, from the yearly average. Even if such an approxi-
mation does not provide an exact fit, the degree of change
from the normal approximation should indicate the
magnitude of error.

Tables of the cumulative distribution funetions of the
first Edgeworth approximation for different values of vy,
the population measure of skewness, are available [13].

Referring to these I found that for small departures from
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symmetry (|g,/<0.2) use of this approximation does not
markedly affect probability points given by the normal
distribution. Assuming a standard deviation, ¢, of 7° F.
(near the maximum for any variate) at g=40.2 the
upper and lower 1 percent points are displaced approxi-
mately 1° F. with lesser changes nearer the median, Thus
it seems safe to say that use of the normal distribution
for the maximum and the range does not introduce any
serious errors since the greatest average g¢,(y) (Storrs
maximum) is 0.1643. For the minimum temperature at
Keedysville which displayed the strongest systematic de-
partures from zero of g,(y), the “expected” value of g, (y)
ranged from about —0.48 to +0.52. It is true that the
1 percent level is quite distorted by this amount of asym-
metry. However, the 5 percent level is only about a
degree off (again letting o=7° F.). Conversely, a devia-
tion which by the normal distribution would be surpassed
5 times in 100 years would, under these circumstances,
oceur about 6.5 titnes in 100 years. Similarly the esti-
mated 10 percent point would be exceeded about 11 times
every 100 years. The Edgeworth approximation should
be fairly accurate when the shape of a distribution is not
far removed from the normal form. Since, as mentioned
earlier, the central limit theorem assures that the distri-
butions approach normality, the use of this approxima-
tion in the present case should be appropriate. Hence,
these figures show that the use of the normal curve
will be satisfactory on all levels of probability except
beyond the 5 and 95 percentiles where one should prob-
ably apply some extreme value distributions.

6. PROBABILITY ESTIMATION

The above considerations on the distribution of tem-
perature variates lead to a satisfactory method ol esti-
mating probabilities. Since we may assume for our
purposes that the variates are normally distributed, spe-
cification of the means and variances completely deter-
mines the distribution. Our harmonic curves fitted to
the variates provide the first of these parameters, while
the curves fitted to the log variance provide the second.
In the case of the maximum and mean tenmperatures both
curves are essentially sine curves, with higher terms,
even when satistically significant, changing the esti-
mates little. The course of the minimum temperature
1s adequately described by a sine curve. The higher
terms of the curve fitted to the variance do not seem
to make an appreciable difference. For example, for
Storrs the 5 percentile and the 1 percentile are changed
a maximun of 0.8° and 1.2° F. by adding a second term.
Similarly, the probability assigned to a given departure
from the mean seems to be changed by at most 0.02 to
0.03. Since this is less than the level of accuracy ordi-
narily desired, the sine curve alone can be used. Hence
for the maximum, the minimum, and the mean, the
estimation of probabilities for any week of the year re-
duces to the fitting of six constants. 1 should point out
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that although & sine curve is adequate to describe the
courses of these temperatures at the stations studied, the
possibility is not excluded that at some locations bigher
terms may be necessary. Each term can, however, be
specified by only two additional constants.

For the range, at least two terms, i.e., five parameters,
should be wused for estimating the central tendency.
Since at some stations the second term in the curve de-
scribing the course of log s%4nge is of prime importance,
five constants seem to be necessary to estimate the vari-
ance. However, in cases where there is no discernible
pattern in the variance, it is probably best to use a single
average variance derived from the row for scatter about
the average curve. Thus for Storrs one would use 15.7
(° F.)? as the variance of the range (table 1, row 5).

Although the above discussion puts forward a relatively
simple technique for estimating the mean and variance of
temperatures from a small number of constants, there is
a further simplification that may produce equivalent re-
sults, at least for the mean temperature. I noticed that
not only does the log variance of the mean temperature
follow a simple sine curve but also the time of the maxi-
muam variance is about 180°, or 6 months, out of phase
with the temperature. For example, the vearly maximum
of the mean temperature at Keedysville, computed from
‘the best fitting simple sine curve, falls 137°27" or 139.4
days alter March 4 (the midpoint of week zero) while the
maximum of log s e 18 at 3139487 or 318.2 days alter
March 4 and 176°217 or 178.8 days after the maximum
temperature. This suggests that the log variance and the
mean may be linearly related with a negative slope.
When 7 was plotted against log s, this was scen to be
substantially the case. In fact, the logarithm so little
changes the relatlonships among the standard deviations
that an almost equally good fit to a linear relationship is
obtained if one plots % against ¢.  If one assumes that the
phase difference between the log vartance and the mean
temperature is exactly 180°, which is very close to the
observed difference, then one can rather easily compute
the slope of the regression of log s on 4 from a knowledge
of the amplitudes of the respective sine curves.

It
Y=ay+a, sin t+b, cos ¢

=a,+.A4; cos (t—¢,) (14)

where A; is the semi-amplitude and ¢, is the time in
degrees of the maximum of the mean as measured [rom
the start of the elimatological year, and if

AN ]
log s=ay+a] sin ¢-+b; cos ¢

—a)+ By cos (t—¢i—180°), (15)
then

N ,
_logs—ay

Z{A:ap—cos (t—¢1)=—cos (—¢—180°) =
1

1
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Thus

N

fogs=—1' 4 avtas (16)
Hence we can give the “regression’” of log s on y from a
knowledge of the sine curves fitted. To test the accuracy
of this method, both the ordinary least squares line and
the line computed from equation (16) were calculated
for the mean temperatures at Storrs and at Easton I and
Easton II and are given in table 3 together with the
regression line calculated from equation (16) for the other
stations studied. We note a remarkable homogeneity
among the slopes of the regression lines for the three
records which cover two Maryland stations, with the slope
at Storrs quite close. However, when one crosses the
Alleghenies to Uniontown, the relation changes radically,
and is even more changed at Eau Claire. Even if the
observed interstation homogeneity in the three castern-
most stations is fortuitous, the stability of the regression
lines between two independent records at Easton shows
that it may be possible to estimate temperature proba-
bilities for any week of the year from only five parameters,
the overall mean, the phase angle, and the amplitude of the
temperature curve, and the amplitude and mean of the
log variance. This relationship does, however, need
further study, especially with respect to the geographical
stability of the “regression’’ of log s (or ) on y.

One point in the above discussion may need som e expla-
nation. It is a well-known fact that in drawing samples
from a single normal population, % the estimate of the
population variance, and ¥, the estimate of its mean, are
independently distributed. How then do we have such a
marked correlation between the means and the log
variances, when we have seen that the distributions are
not far from normal? The question is, however, meaning-
less sinee, although we have drawn 52 samples from normal
or near normal populations, these populations have not
been the same. There is neither a priori nor a posteriori
evidence that the population of mean temperatures for
week one is the same (i.e., has identical characteristics)
as the population for any other week. In fact, our in-
vestigation has demonstrated that these distributions
are definitely different. Thus one should not expect the
independence between s? and i which would result if the
populations were the same. A relationship between the
true values (not merely the estimates) of the averages and

TaABLE 3.—Regression equations of log s on y compuled by least

squares and by equation (6)

Station Least squares line Equation (6)
EastonI_.________ __-.| log £=1.020113—0.006454%7 . _____ log $=1.02479=0.006543§
Easton I1__ ___| log $=1.018815—0.006057¢F._____ log §=1.02260—0.006128y

Storrs.____. _| log 8=0.926768 —0.0052397__ . _ log ¢=0.92002—0.0052
Keedysville ¢ log §=1.02814 —0.006067§
Uniontown__ log 3=1.18340-—0.008311y

Eau Claire________ Jog $=0.89526—0.002067§

1 Not computed.
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variances of the mean temperatures, say, is clearly indi-
cated by the data at hand. Its reality can be indicated
statistically but its cause must be physical. TIn a similar
vein the standard tests for equality of variance, say,
between two different weeks are quite useless. In
advance of such a test, we have a well established result
that the variances are, in general, unequal.

7. PROBLEMS IN FURTHER APPLICATIONS

To this point we have spoken only about the probabil-
ities of average temperatures or average diurnal ranges
for a given week, without reference to the probabilities
for derived quantities, or averages over longer periods
such as months or seasons. If the mathematical model
were completely correct, one could, theoretically, compute
quite complicated probabilities concerning degree days,
frost dates, ete., from a knowledge of the joint distribution
of the coeflicients of the curves which describe each year.
This knowledge is also nceded for efficient use of the
parameters in relating them, as being in some sense a
description of a yearly temperature regime, with other
elements, climatological, agricultural, or physical. Before
proceeding further, we should inquire to what degree the
estimated coefficients for a given vear do contain the
salient features of that year. To this end, T tabulated
the published departures of the monthly mean tempera-
tures from the long-term normal for the regions or States
in which our stations are located. Years were then picked
by eye which had various characteristics, e.g., waimer than
normal spring combined with colder than normal winter,
ete. Then, using the best fitting harmonic curves for
these years for the stations involved, the “expected”
temperature, ¥, for each week was computed and com-
pared against the 30-year average curve. In every case
the unusual pattern for which that year had been chosen
was observed in the fitted harmonic curve. Although
they lack fine detail, the curves for each year definitely
reflect the course of the temperature for that year.

Determination ol the distribution of the true coefficients
is far more difficult since they cannot be observed directly.
We can examine only estimated coefficients. A further
complication is the previously discussed dependence of
the coecfficients upon our arbitrary choice of origin. Thus
a full discussion of this problem would involve determin-
ing all relationships among the coefficients which are not
changed by any choice of origin. However, despite the
above objections, I considered it valuable to examine
more carefully the estimates of the coeflicients for the
particular choice of origin we used. To provide a mini-
mal test of normality in the marginal distributions ol the
separate coeflicients, the ranked estimated coefficients for
the curves fitted to the mean temperature were plotted
against rankits (expected order statistics for the normal
distribution [9]) for each of the two Easton samples.
Departure [from normality of the estimates should be
reflected in non-linearity in the plotted points. In every
case where any noticeable non-linearity occurred in one
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record, it was not visible in the other. Thus I concluded
that there was no evidence for rejecting the hypothesis of
normality among the estimates of the coefficients. To
the degree that non-normality in the distribution of the
actual coeflicients would be reflected in non-normality of
the estimates, this indicates normality in the marginal
distributions of the actual coefficients. Hence, they are
probably distributed in a multivariate normal distribu-
tion. Further, we computed covariance and correlation
matrices for the seven estimated coefficients for each of
the two Easton samples, and then combined them to get an
estimated covariance matrix based on a 60-year sample. It
can easily be shown that for our choice of origin, the winter
maximum of the variance of the mean temperature implies
that there should be positive correlation between a, and
a; and negative correlation between @y and b,. Hence
any test for the significance of these observed correlations
should be single-tailed, and we should also compute
the partial correlation r(a,, bilay). We found that there
were several correlations of statistical significance, i.e.,
larger than one could expect to occur by chance alone.
However, their practical significance is negligible since
they are all less than 0.5 in absolute value. The physi-
cal or climatological meaning of such correlations is
not clear, especially in view of the fact that any one may
be reduced to zero by some choice of an origin in fitting
the polynomials.

There is one further problem which would limit the
application of this method, even were the above problems
solved. There appears to be considerable difficulty in
making a meaningful correspondence between the param-
eter space and the space of “year types.” In other words,
there is no clear way to pick out all those sets of coeffi-
cients @, @; . . . , @3, by, . . ., by, which, when used in
a harmonic curve, would produce a “warm spring.”
Unless one can accomplish this, knowledge of the distri-
bution of the coefficients cannot be fully applied.

There are many applications, however, of the average
curve computed for a location, in which the form of the
distribution of the yearly coefficients is of minor im-
portance. Prescott [12] used maps of the phase and
amplitude of sine curves fitted to monthly temperatures
for stations in Australia to locate suitable homoclimes for
new crops. Except for the difficulties attached to solving
polynomial equations involving trigonometric terms, ex-
pression of the yearly course of temperature by a periodic
curve provides a means of locating the time when the
average temperature is at a maximum or a minimuin.
If

Yy=dao+a, cos t+b; sin t+a, cos 28+b, sin 264+ . . .
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the relative maxima and minima occur at those values for
t for which

—a, sin t+b, cos t—2a, sin 2t+2b, cos 2t— . . .=0.

Similarly, the day on which the average maximum,
minimum, or mean temperature passes some critical
value can be computed from the coefficients of the aver-
age curve. In the case of the mean temperature, of
course, this type of problem is generally simple sinee the
temperature can be considered to follow a sine curve.
However, for more complex curves, a process ol successive
approximation seems to be necessary.
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