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ABSTRACT

A general solution is obtained for forced, stationary, quasi-geostrophic perturbations in an atmosphere having the
main zonal-average characteristics of the winter troposphere and stratosphere. Special solutions along 45° N. latitude
are obtained for idealized representations of foreing due to internal sources and sinks of heat and due to lower boundary
airflow over topography. The results show how the solutions depend on the spatial scale of the disturbances. For
example, on the long-wave side of a critical vector wave number corresponding to quasi-resonance, the disturbances
forced by internal heating tilt eastward with height thereby transporting heat southward, and tend to increase in
amplitude above the tropopause into the high stratosphere. The reverse is true for waves smaller than critical.
Comparisons with observations suggest that the real atmospheric mean waves are combinations of modes from the

two regimes.

1. INTRODUCTION

This study is an extension of two previous studies by
the writer [15], [18] concerning the linear theory of the
time-average perturbations in the westerlies, a subject
considered earlier by Charney and Eliassen {5], Smago-
rinsky [23], and Gilchrist {10], for example, and more
recently by the Staff Members of the Academia Sinica
(24], Barrett [2], and Doos [8], for example. As in the
previous studies, we base the theory on a quasi-geo-
strophic, B-plane representation of the atmosphere and
apply it only to winter conditions along 45° N. latitude.
Our aims here are: (1) to improve upon the representation
of the basic zonal-average state by adopting a more real-
istic vertical profile of the basic zonal wind and static
stability, including a stratosphere; (2) to extend the cal-
culations to a broader spectrum of harmonic components;
and (3) to examine the energetical properties of the solu-
tions. In connection with the first aim, we continue to
assume that the basic current is independent of latitude.

The linear equations used here and previously are valid
only as a first approximation, and cannot be expected to
be capable of accounting for all of the details of the ob-
served mean perturbations, especially in higher latitudes
(cf., Saltzman and Rao [20]. Moreover, we make no
attempt to treat the effects of lateral deflections of the
zonal curvent around mountain barriers.
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The energetics of the solutions are discussed.

Because we are dealing with the stationary component
of the motion, we do not expect the long-wave properties
treated here to be subject to the full effect of the difficulties
described by Burger [4] in connection with the transient
behavior of the long waves.

2. THE MATHEMATICAL MODEL

The linearized potential vorticity equation governing
the time-average perturbations of the meridional geo-
strophic wind speed, can be written as follows for a g-plane
with no latitudinal variation of the basic state (cf.,
Saltzman [15]),

e, On fp o £ (1) on
5% Tog®  Rr,opt R op\Ty) 3p
B 2 o 2%)] I
+ u0+/u,0Rbp T, 0p S (1)
where

r*=distance eastward
y*=distance northward
p=7pressure
t=time
u=-eastward wind speed
p=northward wind speed
w=dp/dt
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T'=temperature
g=rate of heat addition, per unit mass, due to
radiation, conduction, water phase changes,
and friction
g=acceleration of gravity
R=gas constant for air
¢,=specific heat at constant pressure
f=Coriolis parameter

B=0ofjoy*

X=ecastward component of viscous force per unit
mass

Y =northward component of viscous force per unit
mass

I'=(0T/op— RT/c,p)=static stability

— At

()=At‘1f ()dt (time mean over interval or en-
v semble At, such that O( )/dt=0)

( Y=( )—( )=transient departure from time mean

K ___
()o=K*"! ( )dx*= zonal average of time mean
0 variable

( Y1=C( )—( )o=departure of time mean variable from
zonal average
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At the lower boundary (which we take as the top of a
shallow friction layer, designated by the subscript 8) we
assume that the mean w-perturbations can be expressed
as the sum of effects due to forced motion over topography
and forced vertical motion due to friction (Charney and
Eliassen [5]). Thus, defining » as the height of the
ground surface above sea level and C as the lower boundary
friction coefficient, we have

W= "—P;g [(

_bh

o, le>] - .
( > (p=density)
which leads to the following form of the thermodynamical
energy equation,

Ugsfp OV - ah
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Although C and p; are really functions of z* and y*,
we shall assume the effects of their variability in (2) are
small enough that we can adopt some constant average

(p=ps) (2)
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value. Some justification for this is given by Smago-
rinsky [23].

At the tropopause (which we designate by the subscript
R), we assume that v, and 071y/0y* are continuous—i.e.,
() rr= @) ey and @ T/Oy*)rr=(0To/OY*)rrr, in which I
denotes the value on the troposphere side and 17 the value
on the stratosphere side. We can thus write the energy
equation governing v g in the form,

o [ (12w | Rla=1) T,
) l: vop )t uofpa OY* ]v
+ED o0, @=pw ©

where a=T; /Ty

At the “top” of the atmosphere (which we designate
by the subscript 7°), taken to correspond to some arbi-
trarily small pressure, we require (cf., Smagorinsky {23])
that

0, =0, (P:PT) (4)
This upper boundary condition is consistent with the
requirement that w;—0 as pr—0 providing Ov,/0p remains
finite and @ r—0 (cf., Saltzman [15], eq. (26)), and is
also consistent with the requirement that the system be
energetically ‘“‘closed”” at the upper boundary (see
section 5).

We now specify the basic zonal average state to consist
of (1) a troposphere (p;>p>pr) in which the vertical
profile of the geostrophic zonal wind is given by

wo(p)=ado(cp ™)+ BN, <cp”2>—r;R"

(¢>0) (5)

where J, and NV, are the zero order Bessel and Neumann
functions, @, b and ¢ are constants, and the static stability
is given by a constant, T'y=—A4,, and (2) a stratosphere
(pe>p>pr) In which w4, (p) is a constant (i.e., dTo/oy%
=0), and the static stability is given by another constant,
Toyr=aly=—A,<—A4, With suitable choices of «, b,
and ¢, (5) can give a very good fit to the observed winter
profile of u, (see fig. 1a) and has the important additional
property that it makes the coefficient of the zero order
term of (1) a constant (cf., Doos [8]). The representation
of Ty is most valid in the troposphere, and is least valid
in the stratosphere where a representation of the form
Torr=—A/p corresponding to isothermal conditions would
be better (cf., e.g., Gates [9]; Saltzman and Rao [20]).
However, the main feature of the static stability variation
with height (i.e., a very stable stratospheric layer over-
lying a less stable troposphere) is adequately represented
(see fig. 1b).

If, furthermore, we introduce the coordinate transforma-
tions,

(@, y)=f(BA;ps) - (z*, y*)
£=2(p/p.)'""
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where s denotes the value at sea level, we can write the
governing equations for our system in the form,

0%y , O, 0%, , 1 O

. RA,ps
s ) LR
(6)
(a”‘ a”‘)+%§’;+§%—”£+lﬁwl
A
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o, or, du\ 2R -
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0 2R
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Notice that the effect of forced airflow over mountains

. [0) . : . .
represented by S, as it appears in the lower boundary
condition used here and also previously [18] is that of an
equivalent surface heating. This is therefore the converse
of the approach used by Stern and Malkus [25] in their
treatment of the problem of airflow over a heated surface.

3. THE SOLUTION

We assume that the variations of the forcing functions
Fy, @, and S near a given latitude circle can be represented
by a double Fourier series over a region formed by the
length of the latitude circle and an arbitrary meridional
width (let us say, 40° of latitude) centered on the latitude
circle. That is,

ﬁ gm,n
{Q -> = { Qm,n}expmkmwzfny)] (11)

Mm=—w p=—o
Sx m, n
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where

i=v—1
k=2x(RA,p) [ K*
(=21 (RAp)2/fL*
K*=length of the fundamental region corresponding
roughly to the distance around a latitude circle
L*=zonal width of the fundamental region
m=wave number in the 2-direction
n=wave number in the y-direction.

Then we can write the solution of the system (6)-(10) in
the form,

’01(27,?/,5):7":2_3& n=Z_ Vo n(§) exp [i(kmaz+Iny)] (12)
where, for the troposphere:

Gmn<f; E) on n<f>df
F 10 nE) S mnlEs) F T n) Q walfr),

in which G, I, and J are the complex influence functions
for the effects of heat and momentum sources in the
interior of the troposphere, at the lower boundary, and
at the tropopause, respectively. These are given by

Vm. n(é) ZL:R
(13)

oy TRApPe gl&e) <&
GutaO=—"g S 08 St
=G, +1G5, (14)
2R®
I n(E)= —m [espa(NE) —eghr(NE) ]
=104, (15)
Jm n(g) /[E [Ca\l/ ()‘E) cl‘//Z()\E)]
=J i 5 (16)
where
gla; b)=[caps(b) —c (b) 1 X [eat (@) — (@)

a=19' 08+ (i (6]
=19 () H(H —inla )

=l )+ )]

=1 )+ 0]

v =i

N=(Rr— 2 ) N = (B3, M= (B —aus)

w2= (k2m2 4 12n?)
B =(Cot3—164)7"

y=u’sfkm
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and the functions y,(A£) and ¢»(A¢) are given by,

Yi=Jo(AE), N*>0
Ya=No(AE), N°>0
Yr=Jo(1N'E), N*=(1")*<0
Yo==tH (AN ), N2=(1N")2<0
N=1, \2=0

Ne=log & N=0

where J, N,, and H, are the zero order Bessel, Neumann,
and Hankel functions, respectively. Note that for the
previous model studied by the writer [18], as well as for
the models studied earlier by Smagorinsky [23] and the
Staft Members [24], the homogeneous solutions, in terms
of which the complete solutions were expressed, were the
confluent hypergeometric functions rather than Bessel
funections.

Assuming all the forcing is confined below the tropo-
pause (i.e., F1=0 for £<¢&g), we have for the siratosphere:

‘—fm, nr(£)=Xm,n(E)'Vm,n(gR>7 (£R>£>ET) (17)
where
X n(E) :[ a1 (AE) +(Auk) , — 2 (Arrér) .
™ vy (\rkr) Hde(Nrikr) 121 ()\1157')

In the sense that both damping and amplification of
the mean tropopause perturbations into the strato-
sphere are permitted, this solution is more general than
the stratosphere solution of Smagorinsky [23] which
requires exponential damping in all cases,

Some of the general properties of the solution regarding
the positions and slopes of troughs and ridges of the
pressure field are readily deducible from the differential
equations:-

(Case I) Forcing due to mountains or equivalent boundary
heating (Fi=Q=0, S;#0).—Assuming a harmonic form
for v, we have applying (6) at the trough or ridge (»,=0),

which has the general solution

d'Ul __A’

&)t (A4 is a constant).
In order to satisfy the tropopause condition (9), for
Qrr=0, we must set A=0 which means that dv/dté=0
for all £ along a trough or ridge line. Thus we conclude
that in this model trough and ridge lines associated with a
boundary-induced perturbation of a given wave number have
no slope with height.

Furthermore, at the intersection of a trough or ridge
with the lower boundary, we have from (8)

bvl bul _2RSl

0z OY/) uesfts
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Thus, in the case of a pure mountain effect, for example,
we have the approximate relation

on_owy_ _, Oh
oz "oy )~ e 5

which implies that the center of cyclonic vorticity must be on
the downslope (heated) side of the mountain and the center
of anticyclonic vorticity on the upslope (cooled) side. In the
absence of friction (i.e., C=0) we would have 0h/0z=0 at
=0, which would mean that troughs and ridges coincide
with the valleys and peaks of the topographic harmonics
(cf., Barrett [2]).

(Case II) Forcing due to internal sources of heat and
momentum (F1#0, S,=0).—For the intersection of a
trough or ridge line with the lower boundary in this case,
we can write (8) in the form

on_ (or_our)
of o oy
which means
ov [ >0 for a trough

ot | <0 for a ridge

since §>0. Thus, at the lower boundary all troughs and
ridges induced by internal sources of heat and momentum
must tilt KASTWARD with height. In the absence of the
surface friction (C=0), we have s=0 and hence 0¢,/0t=0
which would imply no tilt of the troughs and ridges with
height at the lower boundary. From (13) and (14) we
can show that in the absence of friction we have G'?=0
and, hence, the troughs and ridges would continue to
show no tilt with height throughout the entire atmosphere
if the vertical model surfaces of the forcing function have
no tilt with height (cf., Smagorinsky [23]).

As can be seen in the following section (and also in the
previous calculations by the writer [18]), when friction is
included, the slopes of the troughs and ridges some dis-
tance above the lower boundary display systematic
variations depending on the wave number of the perturba-
tion. These appear to be in accord with the results of
Gilchrist [10].

From (3) we can also deduce some of the properties
which the solution for our model must display at the
tropopause. If, for example, Qz=0, we must have at
all points along the tropopause,

2,
op/ e 0P/ rr

OT) (2
ox RIT ox RI
which implies an increase of the amplitude of the mean

temperature waves as we pass from the troposphere side
to the stratosphere side.

or
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4. SPECIAL SOLUTIONS CORRESPONDING TO WINTER
NORMAL CONDITIONS AT 45° N.

A. PARAMETERS

The following constants defining the physical system
are chosen,

K*=3X10° cm.

L*=4.5X108 cm.
f=10"*sec.”!
B=1.7X10"" ¢m.~! sec.”!
2s=1000 mb.
£=1.8974 (900 mb.)
£,=1.0000 (250 mb.)
ps=1.2X107% gm. cm."?
C=1.6310* cm.

and the following constants are taken to describe the mean
zonal state,

a=0
b=33 m. sec.™!
¢=0.067 mb."172
A;=5X10"2deg. mb.™!
A;;=3X10"1 deg. mb.™!
wos(L[2) =4.68 m. sec.™!

(a=6)

The profiles of u,(p) and Fy(p) implied by these constants
are shown in figure 1a and 1b along with the profiles used
in the previous study (Saltzman [18]) and the observed
January normal values at 45° N.

Forcing due to two physical effects will be considered:
(1) lower boundary heating and cooling due to adiabatic
airflow over topography and (2) internal heating and cool-
ing with an assumed maximum near 700 mb. due to a com-
bination of diabatic effects and transient eddy heat fluxes.
From previous studies by the writer [17], [18] it appears
that forcing due to internal sources of momentum, meas-
ured by M,, is smaller than the above effects, but perhaps
is not unimportant if one wishes to account for a small
residual percentage of the total variance of the mean map.
(Better determinations of M, should be possible now with
the use of data presented by Crutcher [7].)

B. STRATOSPHERIC AMPLIFICATION, INFLUENCE FUNCTIONS,
AND RESONANCE

Before discussing these forcing functions, let us first
consider the influence functions I, ., Jua and G,
and, also, the quantity x,, , which represents the mag-
nification factor for the amplitude of the perturbations
above the tropopause. These quantities depend only
on the wave number and the physical constants given
above.

In table 1 we present some of the derived parameters
which depend on wave numbers, for m=1 through 6 and
n=0and 1 (i.e., for 12 vector wave numbers, measured by
©5), and in figure 2 we show the stratosphere amplitude
function X, , for these same wave numbers. We can see
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from this figure that only the perturbations having the
lowest vector wave numbers can amplify above the tropo-
pause. This characteristic seems to be in good agreement
with observations (cf., Teweles [26]; Arctic Meteorology
Research Group {1]) even to the extent of implying the
observed meridional elongation of the waves at 50 mb.
compared to 500 mb., particularly for m=3 and 4 (cf,,
figs. 7 and 8 of Teweles {26]). This result can be under-
stood in terms of the fundamental equation (1) applied
to our stratospheric case of %, >0 and Fj=0uy/op=
OTy/dp=0. It can be seen that for a given double Fourier
component in the xz*—y* plane, the term 0O(pov,/op)/op
(which is proportional to the advection of the thermal part
of the potential vorticity) must be opposite in sign to
when the vector wave number is low enough that the
B-term dominates over the first two terms of (1) represent-
ing the advection of relative vorticity. This requirement
can easily be fulfilled by the existence of a maximum or
minimum of », within the stratosphere, as is the case in
the solution,

The influence functions, I(=I1"44[P), J(=J"+
1J®), and (=GP +-iG®), from which one can compute
the troposphere solution, given the forcing functions, are
tabulated in tables 2 and 3 at every 100 mb. although
actual calculations were made at every 50 mb. In the
case of &, tabulations for only four reference levels (900,
700, 500, and 300 mb.) are given although actual calcula-
tions were made for every 50 mb. between 900 and 250 mb.

An obvious feature of these tabulated influence func-
tions is the marked increase in magnitude, and the reversal
of signs, in the vicinity of wave number (5,0), which imply
high amplitude responses and changes of phase of the
perturbations near this wave number. This is a reflection
of the fact that the vector wave number 4, is very close
to the “‘quasi-resonant’” vector wave number for the model

treated (cf., Gilchrist [10], Smagorinsky [23]). The exact
quasi-resonant wave number, which we call uh. .« (=
km*24-In*?) satisfies the condition

02(7)03—1C(T)C4=0 (18)

which in the absence of surface friction (C=0) would imply
that ®4 .« (and also 18R ., J& .. and G .«) approaches
infinity and & . (and also, I v, J& .., and G ) equals

zero. Hence, the responses would be of infinite ampli-
TasLE 1.—Parameters dependent on wave number.
m n u? Y M Y r 2 i
000830 44261 | 6.1663|0.1273 | 0.5011 | 0.5463 0. 0061
0] .2518| 4.2272 | 5.0332 | .2547 .3775 .6272 L0117
0| 5666 | 3.0225| 301447 | .3820 11542 .8811 L0102
0] L0072 | 3.4818 (5008 | L5093 | —.0394 | 18466 | —.1117
0l 15738 | 2.9153 | ~2.8985 | 6368 | —.0478 | —.6451 | —10.9261
026620 22228| —7.0532 | .8975 | —.3600 | —.7300 [ —.0700
1)2.8606 | 1.6285 |—10.6193 | 5.7863 | —.4533 | —.1785 | ~.2153
1]30404 | 104396 [—11.7524 | 3.0842 | — 4812 | —2773 | —.1702
1]3.3642 | 1.1249 (1306409 | 2:2683 | — 5252 [ —.2643 | —.1122
1138048 -6842 |—16.2848 | 1.9241 | —.5828 | —.2109 | —.0741
1] 4.3714 1177 |-19.6841 | 1.7686 | —.6502 | —.1735| —.0505
1| 50638 | —~. 5748 |—23.8388 | 1.7072 | —.7252 {-oooooeo{ovaicoacs
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o I [ ' , ] | , ] greater than we might have expected (cf., Saltzman and
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100 - i be cautious about discussing solutions near the quasi-
e resonant point even though these may be most sig-
200 1= J—— — nificant physically. The first is that a very high-amplitude
300 L | response would be inconsistent with the hypothesis of
small perturbations—i.e., the appearance of strong
3 400 - non-linear effects may invalidate the theory near (m*, n*).
é The second is that even if the solutions near (m*, n*)
7 500 - / PREVIOUS  MODEL -1 are roughly correct, they are so sensitive to the choice
«\ ; .
¥ o0 L of parameters that we cannot be sure of their corre-
* spondence to real atmosphere conditions. Needless to
200 |- | say, these questions concerning resonance can have
important implications for the subject of global modifica-
800 - - tion of climate.
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I 1 I | | I | ) . ot . . |
1000 5 10 5 20 25 30 35 40 a5 Let us represent the topographic surface in the neighbor-

Fo(-10 2 DEG/MB)

Figure 1.—(a) Winter profile of uy at 45° N. used in the present
study (dashed ling), in the previous study (Saltzman [18]) (dotted
line), and actually observed according to Doo6s [§] and Crutcher
[7], (solid line). (b) Winter profile of I’y at 45° N. used in the
present study (dashed line), in the previous [18] study (dotted
line), and actually observed according to Gates [9]), (solid line).

tude. In the presence of surface friction, however, the
condition (18) implies that &% .« (and also I ., JZ ., and
G ) equals zero and @2« (and also IR ., J2 0 and GR ,..)
is a large but finite number. Thus, in our frictional case,
internal sources and sinks of heat and momentum of scale
(m*m*) having no tilt with height will induce large-
amplitude perturbations also having no tilt with height.

The existence of quasi-resonant modes must have an
Important bearing on the form assumed by the mean

hood of 45° N. by a double Fourier expansion of the form

w©

h(z, )= > By exp [i(mhz-taly)]

=—c

8

=8i+2 (284 cos nly+284", sinaly)
n=1
2 Om,o
+> cos Mm{kr—en, o)
m=1 2
+2° i [Cm.n c0s M{kt—ep, o) COS NlY

m=1 1

B3
I

4D, cos m(kx—0,, ,) sinnly], (19)
where

K L
Em,nzﬁﬁ ﬁ hiz,y) exp [—i(kmz+ Iny))dady

zgg,)n_ 78572,) n
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TaBLE 2.—Influence functions, I'n ., and Jp . tn units of 10% cm. deg.™!
(m, n)
p(mb.) (1,0 ’ 2,0) ] (3,0 l 4,0) 5,0 (6,0) (1,1 I (0AY] ‘ (3,1 [CAY) 5,1

1) (p)
—2,103 —2,445 —3,513 —7,511 2,633 3,074 760 1,184 1,134 950 757
—1, 682 —2,017 —3,049 —6,826 2,437 3,038 773 1,215 1,181 1,008 821
—1,188 —1,492 —2,421 —5, 761 2,126 2, 860 755 1,200 1,187 1,037 869
—688 ~948 —1,733 —4,524 1,758 2, 597 718 1,156 1,168 1,048 906
—217 —425 —1, 047 —3,235 1,368 2,287 669 1, 094 1,131 1,046 936
204 53 —306 —1, 966 1,950 611 1,018 1,083 1,035 960
565 472 1,967 =765 1,601 549 935 1,025 1,017 980

1% (p)

7
—23 —45 —41 454 44,587 721 916 727 481 320 220
-19 —38 35 413 41,269 712 932 746 £01 340 239
~13 —28 —28 349 36, 000 670 911 737 504 350 253
-8 —18 —20 274 29,776 609 866 710 496 353 263
-2 —8 —12 196 23,168 536 806 671 480 353 272
2 1 -5 119 16, 537 457 737 625 459 349 279
6 9 2 46 10, 118 375 662 574 435 343 285
JC (p)

—1,269 —1,519 —2,279 —5,186 5,702 2, 687 1,471 1,456 1,295 1,104 930
—1,334 —1, 567 —2,286 —5,015 4,975 2,363 1,205 1,204 1,058 883 723
—~1,252 —1,457 —2,091 —4,492 4,086 1,992 954 969 848 697 560
—1,085 —1,254 —1,783 —3,779 3,141 1,609 720 751 658 537 425
—869 —1,001 —1,414 —2,973 2,200 1,229 505 551 486 395 211
—631 —725 —1,020 —2,136 1,298 863 307 366 330 269 211
—387 —445 —625 —1,310 518 127 197 187 156 123

J6(p)
16 43 130 778 34,147 233 211 153 88 49 28
13 35 113 707 31, 605 230 215 157 92 52 30
9 26 89 596 27, 570 217 210 155 92 54 32
5 17 64 468 22, 804 197 200 149 91 54 33
2 7 39 335 17,743 173 186 141 88 54 34
-2 —~1 15 204 12,665 148 170 132 84 53 35
—4 —8 —73 79 7,749 121 153 121 80 53 36

Omn=2[(g(”:)n+ .(7:-')_’1)2__*_( frf,)n—l_g;rf?—n)z]l/

Dm n:2[(8l(nr)—n°— inr)n)Z_,_( g)n_gr(ni)—n 2]1/2
Enn®+ Em-n?

8m n(T)_'— 8m _"(7)]

L= gm'nm]

i R
n( ) 8 m,—n(l)

€

3

1
=— arctan
m

O, n=l arctan [ Em
m Em

E,, . is the complex Fourier coefficient, and ¢ and 6 are
the phase angles of the harmonics along a latitude circle
indicating the first longitude at which a maximum of &
oceurs. From (19) and the definition of S, ™ we can now
write the following expressions for the real and imaginary
parts of the complex Fourier coeflicients of the boundary
forcing function, providing we take wu, as a constant,

Sm,n= cs)m,nU)_?:Sm.n(i)
Sm,n(”=—E8m,n(i)
CS)"’ n(i)zzgm n(T)
where

E=pagfues (A:1/Bp,)'*mk.

It is instructive first to show the general effects of the

scale of the topography only by computing the response
»; on the assumption that all of the topographic har-
monics have equal amplitude and phase along a given
latitude (45° N., in our case). We also assume that
ugs is uniform with . The calculations were made for all
the vector wave numbers included by m=1 through 6 and
n=0 and 1, but because of the similarities of the results

for m=1, we shall delete (m,n)=(4,1), (5,1), and
(6,1) from the presentation.
In particular, we have set 0, /2=—C, ;=200 m., D, ,

=0, and e, ¢=¢n,=0, which from (19) is equivalent to
setting & n o " =& n 1" =§& m, 19 =0, Cr o/2=2§ ..0»""”, and
Cr1=48& n1"=4E m 1. 'Thus, we shall present results
for all components except (4,1), (5,1) and (6,1) included by
the expansion,

6
h (z,y)=> [ 4-hm-D]
m=1

where

h"”"’)zo—;‘o cos mkz

AV =—(C, | cos mkx cos ly

Theva lues of I, , from which the responses are easily
obtained using (13) are given in table 2. The solutions
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TaBLE 3.—Influence functions, G, ., in units of 1010 em. sec.
(m, m)
plmb)_ ... (1,0) 2,0 ‘ (3.0) ‘ 4,0 l (5,0) I (6,0) ‘ 1,0 l (2.1) ‘ G 1 “ 31
G &) (p; $00 mb.)
________________ —119 —139 —200 —427 150 175 43 67 64 54 43
- —119 —143 —216 —484 173 215 54 86 84 71 58
- —110 —138 —223 —532 196 264 70 111 110 96 80
- —85 —117 ~215 —561 218 322 89 143 145 130 112
. —38 —75 —185 —572 242 405 118 193 200 185 166
- 55 14 —107 —530 263 526 165 275 292 279 28
________________ 268 224 93 —363 283 759 260 443 486 482 465
GG (p; 900 mb.)
........... -1 -3 —2 25 2, 532 40 52 41 27 18 12
- -1 -3 —2 29 2,927 50 66 52 35 24 16
- -1 —3 -3 32 3,321 61 84 68 46 32 23
- -1 -2 —2 33 3,689 75 107 88 61 43 32
- 0 —1 —2 34 4,008 94 142 118 84 62 48
- 1 0 -1 32 4,462 123 198 168 124 94 75
________________ 3 4 1 22 4,798 178 314 272 206 162 135
G (p; 700 mb.)
- —268 —313 —451 —069 719 414 172 188 167 137 109
- —268 —322 —489 --1,099 831 511 219 241 217 181 147
- —246 -310 —505 —1,207 943 626 278 310 284 243 203
- —191 —264 —486 —1,273 1,047 764 355 401 375 329 284
- —86 —169 —419 —1,289 1,163 860 472 542 519 469 418
- —96 —187 —461 —1,424 1, 047 1,029 437 549 537 487 434
________________ —103 —202 —496 —1,534 649 1, 085 317 519 337 196 444
G (p; 700 mb.)
________________ 1 2 12 109 5,799 58 63 48 30 18 11
. 1 2 13 123 6, 702 72 80 61 39 24 16
- 0 2 13 136 7,608 88 10 79 51 33 22
- 0 2 13 143 8,448 107 13 102 67 45 31
_ 0 1 11 146 9,383 135 17 139 93 64 45
. 0 0 6 135 10,217 176 24 197 136 96 71
________________ -1 —4 —5 92 10, 988 254 38 318 227 167 12
G (p: 500 mb.)
________________ —386 —455 —668 —1,464 1,335 672 325 331 201 241 196
- —386 —468 —724 —1, 661 1. 543 829 413 425 379 320 265
. —354 —451 —748 —1,824 1,742 1,015 525 546 495 428 365
B —412 —522 —856 —2, 060 1,808 1,101 532 568 516 442 372
- —471 —594 —969 —2,314 1, 808 1,201 533 594 544 465 388
- —522 —656 —1, 066 —2, 536 1,627 1,286 494 602 563 483 403
________________ —564 —708 -1, 148 —2,733 1,008 1, 356 358 569 563 492 412
G (p; 500 mb.)
________________ 3 8 28 194 9,011 73 71 £3 31 18 1n
- 3 8 30 220 10,414 90 91 67 41 24 15
- 3 8 32 242 11, 819 110 115 87 53 32 20
- 2 7 30 255 13,127 134 145 112 71 44 28
- 0 4 26 260 14, 581 169 196 152 98 63 42
- -1 —1 15 241 15, 876 220 273 216 143 96 66
_______________ —6 ~1 —13 165 17,075 318 431 349 239 165 119
G0 (p; 300 mb.)
________________ —391 —474 —728 —1, 689 1, 864 906 501 498 445 382 325
N —513 —611 —911 2,040 2,030 995 513 514 454 382 315
- —627 —739 —1,085 —2,378 2,170 1,091 528 538 473 392 318
- —730 —854 —1,242 —2,686 2,239 1,183 536 561 493 405 324
- —834 —974 —1, 408 —3,017 2,239 1,291 536 £86 520 426 338
- —924 —1,075 —1, 547 —3,306 2,015 1,383 497 594 538 443 35
________________ —997 —1,160 —1,666 —3,562 1,249 1,458 360 561 538 451 359
G (p; 300 mb.)
- 5 13 41 253 11,161 78 72 52 30 17 9
- b 13 44 287 12, 868 97 91 67 39 22 13
- 4 13 46 315 14,639 118 116 86 51 30 18
- 3 11 44 332 16,25 144 148 111 67 40 25
_ 1 7 38 339 18, 059 182 197 150 94 58 37
- -2 -1 22 315 19, 663 236 275 213 137 88 58
- —11 ~21 —19 215 21, 148 341 434 344 228 151 104
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are shown in the form of cross-sections along 45° N. in
figures 3 through 11 with the mountain profiles shown at
the bottom. It can be seen that the trough and ridge
properties are in accord with the discussion of section 3
(case 1), and that the vertical variations of the ampli-
tudes into the stratosphere are in accord with the dis-
cussion of section 4B. It can also be seen in figures 3
through 6 that the horizontal node decreases in height
with increasing wave number, and disappears altogether
between (m,n)=(3,0) and (4,0) coincident with a phase
shift of the perturbations relative to the topographic
profile. All of these properties are consistent with the
fact that for decreasing vector wave number (u?) and
basic zonal wind speed (u,) the effect of advection of
relative vorticity becomes reduced compared with the
B-effect. The consequence of the quasi-resonant con-
dition near (5,0) is clearly in evidence.

In figures 12 and 13, the fields of «; and 7' associated
with the solutions for (m,n)=(2,0) and (2,1) respectively
are shown, as these are representative of the two regimes
separated by the quasi-resonant wave number. 1t can
be seen that in all cases |wi|max coincides with |oi|mas,
and |7'|max coincides with »,=0 (in agreement with the
fact that the troughs and ridges have no slope with
height—cf. section 3).

D. RESPONSE TO SOURCES AND SINKS OF HEAT

The distribution of @ (z, y, p) is very poorly known,
For want of a better estimate, we shall adopt a distribution
similar to that assumed previously by Smagorinsky [23]
and the writer [18]—i.e.,

Q@ v )= 30 3 Qo a(p) esp li(mkstniy)]

Mm=—o R=—m

where

Q m, (D) =API)N . n,

the vertical distribution A(p) having the form shown in
figure 14. If we wish, we can expand (20) further in the
manner of (19).

As in the mountain case, we shall examine the effect
of the scale only by computing the response », assuming
the amplitudes and phases are the same for all forcing
harmonics. The following uniform magnitudes of N, ,
(=N, —i N were adopted, all referred to a phase
origin at kr=e,

N{y=—2N{"=—2N{_,=107% deg. sec.™!
NRoe=N3=N;)_,=0
which 1mplies that

Qu(@, ¥, p) =mz (@m0 4 @m0

766-540—6GI——2
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Ficure 3.—Mean meridional wind response, v, to uniform airflow
over topographic harmonic, 209, along y=L/2 in units of 10!
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Figure 4.—Same as figure 3 for L@
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where
QO =2N A(p) cos m(kx—e, o)

QY= —4N, L A(p) cos m(kr—en 1) cos ly.  (21)
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Fraure 6.—Same as figure 3 for A4.0
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Ficure 7.—Same as figure 3 for A6
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For case ¢, =€, we have
Qim,l):Qim,O) at Z/___'zé (450N)

From these expressions for Q ,, , it is easy to calculate
the forcing functions &, » and hence to solve for v, from
(13) given the value of G, ,shown in table 3. The results,
again for m=1 through 6, and =0 and 1, excluding
(4,1), (5,1), and (6,1), are shown in figures 15 through 23
for e=0 (i.e., maximum heating at zero longitude). It
can be seen that the distributions are consistent with the
discussions of sections 3 and 4. Figures 24 and 25 show
the values of w, and 7) corresponding to the same two
harmonics, (m,n)=(2, 0) and (2, 1), used to illustrate the
mountain response.

For value of Ny=10"° deg. sec.”* used here, the maxi-
mum vertical-mean heating, given by

s
f hdyp
rr

is 1.438 X107 %deg./sec., which is of the order of observa-
tional estimates (e.g., Staff Members, Academia Sinica
(24)).

{Qu} Epa—PT

5. ENERGETICS

From the basic perturbation equations and boundary
conditions for our study, we can derive the following pair
of equations for the energy balance of the mean
perturbations:

) ={ &L oy p+{ 2 @}

{Z)I‘ (QlTl)O} o (22

u)( ?7Y _(wl¢l)05 (w1¢>1)07':0 23
+ {w, X +0, Y} D0 Dr—r (23)
where
1
(=
y 2
A4,= _EL =Available potential energy of the
Pl 2 mean perturbations, per unit mass
2 2
KI=<u‘i—v’ =XKinetic energy of the mean perturba-
“ tions per unit mass
¢=(/2
. (ouF duv ou'W
G
A [ouY Q)’_‘ bv’_w’).
Vi=r= ox* +by*+ op
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the given latitude. For this reason, we have not been con-
cerned with assuring that the latitude band over which we
made our Fourler expansion is energetically ‘‘closed.”
We are concerned, however, with the ‘“contribution”
which events near the given latitude circle can make to a
closed system, on the assumption that conditions at this
latitude circle are somewhat representative of average
conditions over the whole atmosphere.

For the Fourier expansions used in the previous section,
we have
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u =0 at yzg (45° N.),

and we have taken
A A
Xi=Y1=
From the lower boundary condition, we have

w1a=w1f+ Wip

where

- on_ou
= p”0< * oy

oh
Wiy = — PsGUgs w

From the upper boundary condition, we have

d17=0.

With these relations, the kinetic energy equation (23)
becomes

(zlt {K‘}_{

The first term on the right of (23”), which has a counter-
part with opposite sign in (22), represents the rate of
conversion of available potential energy into kinetic
energy of the mean perturbations. The second term
represents the rate of frictional dissipation of kinetic
energy, and the third represents the rate of generation of
perturbation kinetic energy due to the presence of moun-
tains at the lower boundary. In (22), the first term
represents the rate of gain of mean perturbation potential
energy from the mean zonal potential energy, and the
third term represents the rate of generation of mean
perturbation potential energy due to diabatic processes
and heat transfers by transient eddies of all frequencies.

If we make a double Fourier expansion of ¢;, 7', and
w, in the manner of (11), denoting the corresponding
complex Fourier coefficients by

(wlTl)0}+(wl/¢15)0+ (wlhd’lé)O:C. (23/)

Pr—Ps

‘bm, n:q);nr,)n_ ,L(br(n',)n
m n_B(T) —?/B(,:)
Qm,nzgl(nf,)n_zﬂl(nl.)m

respectively, we can write the following transforms of
the energy equation for the individual harmonies (m, n),

(lt {A } _{AG'Al}m,n_{Al’Kl}rrz,7z+{Ql'Al }mnzo
(24)
where
— 2R aTO () Jz(n ) R
{AO'Al}m.n’- ])I‘ by [V f +V B ]
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{A-K, }m’n:{?@ [Q")B(”—]—Q‘“B”)]}

{QI-A,}M.F{

_E [Q(r)B(r)+g2(i)B<i)]}

and
(lf {Kl}mn {Al KI }m n+{ }m,-n—[—{h‘Kl}m.n:O (25)
where
2 o
D "= QPN L QD P
(D) w0 (275 0 5]
2 )
(b K b= = (24707 420 819).

From the geostrophic and hydrostatic relations, we have

2rm

Vm n fK* Zq)m n (26)
2 .
Umn:”‘f%?: 1Py n (27)
__ 7 _aéiﬂ_’_‘ 9
Bu= R op (28)
and from the energy equation, we have
Qm, n PoR bp —P_() ay* (29)

With the use of (26) and (27}, we can write the lower
boundary work terms representing the effects of friction
and mountains as follows

D}— bfcpg (H— ?L*2> (VO Ly of, (30)
1 :if—ﬁuy:: [EOV O+ EOV ), (31)

It follows from (13), (15), (28), and (29) that for a single
harmonic response, only to airflow over mountains, there
can be mno internal conversion of energy; ie., {4,- K}
must vanish. Hence, there must be an exact balance
between {D} and {h-K;}. On the other hand, for a
harmonic response only to internal heating we must have
an exact balance between frictional dissipation {D} and
the conversion of available potential energy into kinetic

energy {4, K,}. (By setting Xl—-Y, 0, we have ex-
cluded the transfer of kinetic energy between the transient
perturbations and mean perturbations, a subject dis-
cussed theoretically by the writer [14].)

As an example, in table 4 we present the values of the
energy conversion integrals at y=1/2 for (m, n)=(2,0)
and (2, 1) for the internal heating solutions only. The
possible importance of conversions on these scales has
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TaBLE 4.—Energy iniegrals, evaluated along y=L/[2, corresponding
to the solutions for QY and Q,V, in units of 102 ergs gm.™ sec.™1

Forcing Funection l {Ao A1} \ {A1- K1} l {Q-Ar} l {D}

75
719

186
—308

—75
-719

been discussed recently by Saltzman and Teweles [21].
It can be seen that the rates of dissipation and trans-
formation of energy in the solution for (2, 1) are about an
order of magnitude larger than in the (2, 0) solution,
both being within the range of the observed rates of
energy transformation in the wave number domain
(e.g., Saltzman [16]). We also see that for the “ultra
long wave’ (2, 0), the temperature perturbation leads the
pressure perturbation with a resulting negative value of
{4,- A} This is in agreement with the results of Wiin-
Nielsen [27]. .

If we combine the solutions for heating and mountains
for a given harmonic, or, for example, if we combine two
harmonics having the same value of m but different values
of n (such as is implicit in some observational studies, e.g.,
Saltzman and Teweles [21]), we introduce the possibility
for a form of ‘resonance” between the individual solu-
tions which can lead to values of the quadratic energy
integrals along y==L/2 which are much different from the
simple sum of the integrals for the individual harmonic
solutions. Thus it is possible that on one scale, the combi-
nation of fields of w; and T due to mountains and heating
are such as to reinforce and give a large conversion of
energy, and on another scale the effect may be the
opposite.

6. DISCUSSION AND CONCLUSIONS

In trying to compare these theoretical results with real
mean conditions in the atmosphere, we are confronted
with serious difficulties due to factors falling into two
main categories:

A. LACK OF KNOWLEDGE OF THE TRUE FORCING DISTRIBUTION

Despite recent observational studies (e.g., Clapp [6]),
we must admit that the vertical structure and amplitudes
and phases of the internal forcing functions are very poorly
known. In addition, the mean surface heating due to
airflow over the topographic features has not yet been
determined accurately, and the assumption used here of
a uniform surface zonal wind may be significantly in error.
It would be worthwhile to make a serious observational
study of S;” using anemometer level wind data for the
global station network, as well as to make refinements of

such estimates of @5 as have already been given (e.g.,
Budyko [3]).

B. SENSITIVITY OF THE SOLUTIONS TO THE GEOMETRICAL
AND BASIC-STATE PARAMETERS

The artificiality of the g-plane geometry, and the choice
of the dimension L* in particular, makes it difficult to
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associate the harmonic solutions with the harmonics along
parallels of latitude of the real atmospheric variables. In
the extreme case, it is possible to introduce quasi-resonant
conditions at zonal wave numbers lower than m=5 simply
by increasing the dimension L*. For this reason alone,
we should be cautious about making comparisons with the
real atmosphere.

In spite of these reservations, we should expect that the
solutions obtained here do demonstrate at least the gross
forms of the possible responses to forcing on different
scales, the combination of which in the proper spherical
geometry can account for the observations.

As an illustration of the possibilities, let us attempt to
assign amplitudes and phases to the forcing functions
studied here for m=2 (the scale of the major continent
and ocean system), based on empirical data given by
Peixoto et al. [13] and the Staff Members, Academia
Sinica [24]. The forms taken are,

hy(z, ¥)=A, cos 2(kz—e) - (1—cos Iy) (32)
where
Al-:%i):Oz' 1=100 m.
¢=85° L. longitude
and
Qi(x,y, p)=A:A(p) cos 2(kz—0) - (1—cos ly)  (33)

where
A2:2'N2.OI=4IN2JI =1.5>< 10.—5 deg. SeC._l

6=155° L. longitude

and A{p) is given in figure 14.

The solutions are given in figures 26 and 27, respec-
tively, in the form of cross sections of v, along y=1/2 (45°
N.). Comparison with the results of Teweles [26] and
Julian [11] indicates that the heating solution in particular
shows a good deal of agreement with the observations.

The possibility of achieving plausible solutions for the
troposphere was demonstrated in the previous study by
the writer [18], as well as by the studies of Smagorinsky
[23] and Doos [8], for example. We view the results here
as demonstrating the possibility for accounting also for
the stratospheric mean state as a response to forcing proc-
esses within the troposphere.

In conclusion, we refer the reader to the list of general
suggestions for the improvement and extension of the
problem of the mean waves which were given in the last
section of the previous study [18]. Our main concern here
has been with item 4 of this list which called for improve-
ment of the representation of the basic zonal state. Much
work remains to be done on this as well as the other items.
The recent work of Sankar-Rao [22], which is based on
numerical rather than analytical methods, seems espe-
cially promising.
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Ficure 26.—Mean meridional wind response, v, along 45° N., to
uniform airflow over the topographic representation, equation
(32), in units of m. sec.™!
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