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ABSTRACT 

Crowley’s second- and fourth-order nonconservative techniques for treating the advection term in numerical 
solutions of the hydrothermodynamic equations are tested on a model of cumulus cloud growth over mountains. 
The results are compared with previous integrations using upstream differencing, a first-order method. 

All three methods give comparable results on a symmetric case. However, numerical damping which is a charac- 
teristic of the upstream-differencing method is considerably reduced in the Crowley techniques, as evidenced by 
curves of kinetic energy changes and sources and sinks for this energy. 

In  an ambient wind case the Crowley second-order method and the upstream-differencing method give comparable 
results if the eddy diffusion coefficients used in the Crowley method are twice as large as those used in the upstream- 
differencing method. 

The results illustrate that  the value of the eddy coefficients is crucial for the formation of the numerical clouds 
in the ambient wind model. Coefficients that  are too small or too large lead to weak circulation cells created by the 
heated slopes and insufficient penetration into the upper flow region to  form a cloud. 

The smaller numerical diffusion of the Crowley second-order method is illustrated in a test of the numerical 
ffusion of rainwater in the cloud model. Upstream differencing causes rainwater contents downwind an order of 
ngnitude larger than those that occur using the Crowley technique for advection. 

1. INTRODUCTION 
Crowley (1968) presented results of numerical advection 

experiments using several higher order finite-diff erence 
techniques for the advection term of the hydrodynamic 
equations that commonly occur in fluid dynamics prob- 
lems. He applied these techniques to simplified problems 
and stated that “The final evaluation of the usefulness of 
these higher order advection schemes can be made only 
after they are tested in more realistic hydrodynamic 
models.” 

We have applied his second- and fourth-order advection 
nonconservative techniques to a problem of upslope wind 
and cumulus initiation over an infinitely long mountain 
ridge (Orville 196%). Previous work on this cumulus 
model had been done using upstream differencing, a 
first-order method, which Crowley showed to be quite 
dissipative (see also Roberts and Weiss 1966; and Molen- 
kamp 1968). An advantage of the strong dissipation (which 
occurs principally in the shorter wave lengths) is the 
great stability of the numerical method. Disadvantages 
are the “indefiniteness” of the diffusion (since the mixing 
coefficient is dependent upon the grid spacibg and fluid 
velocity), the phase error of the wave motion, and the 
fact that any field that is advected is also diffused-a 
situation that numerical cloud modelers may not want 
(particularly with regard to modeling the precipitation 
process). One of the advantages of using Crowley’s 
second- or fourth-order schemes would be that most of 
the numerical diffusion would be eliminated. 

Other schemes may work as efficiently. Arakawa’s 
(1966) technique was used by Nickerson (1965) success- 
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fully but was not used as successfully by Molenkamp 
(1968) in small-scale numerical problems. Bryan’s box 
technique (1966) may also be applicable. The important 
point to emphasize is that the techniques allow the dif- 
fusion to be represented explicitly in Fickian diffusion or 
other diffusion representations and not implicitly in the 
advection terms. 

4. SUMMARY OF EQUATIONS 
The derivations of the equations have been exhibited 

elsewhere (Orville 1965, Liu and Orville 1969). The 
equations will be briefly summarized below. They are 
applied to a two-dimensional region. (2, z )  in the atmosphere 
bounded below by an idealized mountain-valley surface 
and above by an inflexible boundary-no motion is 
allowed across the upper level. Air is allowed to flow 
across the side boundaries. 

A vorticity equation is used. It is 

aq--V ova+- Y ae‘ -+.6l g --g arf -+KV2q  a i  at- e ax ax ax 0) 

where q is vorticity, V is two-dimensional velocity with 
horizontal component u and vertical component w, 8 is the 
potential temperature of a reference state, ef is the 
deviation of potential temperature from this state, r’ is the 
deviation of water vapor mixing ratio,-1 is total cloud and 
rainwater content, K is the eddy coefficient, assumed 
constant and the same for momentum, heat, and water 
substance, g is the acceleration of gravity, 5, z, and t are 
the horizontal, vertical, and time coordinates, respec- 
tively, and V2 is a two-dimensional Laplacian. 
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TABLE 1.-Various cases, (initial parameters, and principal results o j  
numerical integrations 

Incompressible flow is assumed so that the continuity 
equation is 

au -+-=o a w  
ax aZ 

which allows a streamfunction, +, to be defined, 

Cloud 

(m) (mid 
Case Method X(m* sec-1) AT, Ai Initial wind formation Principal results 

~ 

SYMMETRIC MODEL 

1 U D  40 50 Zero 132 Cloud initiation 
2 CM-2 
3 CM4 123 ment is similar 

122 and develop 

inall3cases 

AMBIENT WIND 

and leads to 
W = v .  

The thermodynamic energy equation is 

(3) 

~ ~~ 

4 U D  40 100 Ambient wind, 100 Cloud initiation 
and develop 

only 2 cases 

constant 
shear ment similar in 

5 CM-2 None 
6 CM-2 40+K’ None 
7 CM-2 80 112.600 
8 CM-2 160 None 

(4) 

with 

e’ Lr 0’ Lr a’= - + - unsaturated = - + 2 saturated 
8 cPToo 8 C p T W  

RAIN EVAPORATION SET TO ZERO where +’ is related to entropy, c p  is specific heat at  
constant pressure, r and r ,  are water vapor mixing ratios, 
rs the saturated value, and Too is the Kelvin temperature 
a t  the base of the reference atmosphere. 

9 CM-2 80 100 Constant shear 112.600 Less numerical 
dlfiusion of rain 
in CM-2, case 9 

10 UD 10 112.625 

UD, upstream differencing 
CM-2, Crowley second-order method 
CM4, Crowley fourth-order method 

The equations for conservation of water are 

-=--v aq 
at * vp+Kv p -P, (5) 

and 

l a  
a2 

%=-V - QQ+Kv~Q+- - (pv,~,) 
mountains (case 5 of Orville 1965, Orville 196%). One 
method of analyzing the computational methods in- 
volves the comparison of the changes of kinetic energy 
and the sources and sinks of that energy. Equation (7) 
(Orville 1968a), 

with q=r+l,  and Q=r+l ,+l ,  where p is the total cloud 
water substance, Q is the total water substance, I, is the 
cloud water content, I ,  is rainwater content, p is density 
of air, V ,  is the terminal velocity of the mean size raindrops 
of the Marshall-Palmer (1948) distribution which the 
rainwater content is assumed to follow, and P, is a 
production term that allows for evaporation of rainwater, 
conversion of cloud water to rainwater, and collection of 
cloud water by rainwater (Liu and Orville 1969). This 
production term is similar to Kessler’s (1967). It should 
be noted in equation (6) that no explicit mixing of rain- 
water is modeled. 

The initial stability in the atmosphere is represented 
by a potential temperature increase with height of 
2.8’K km-’. The water vapor decreases from a base 
value of 11 or 11.5 gm kg-’ at  a rate of 2 gm kg-’ km-’. 
Heating and evaporation at  the slopes and valleys is 
treated in the same way as in Orville (1965).: 

3. SYMMETRIC CASE 
The principal results of all of the tests are summarized 

in table 1. The higher order advection schemes first were 
applied to a symmetric model of cumulus growth over 

shows that kinetic energy is changed by horizontal 
gradients of potential temperature, water vapor and 
liquid water, and by the diffusion of vorticity. 
The brackets [ ] = rf ( ) dz dz indicate an integration 

over the entire x, z plane. In  the above, RE is kinetic 
energy and is given by the double summation of the 
squares of velocities over all grid points (i, j ) ,  that is, 

KE =CjCJ(u:.  j f ~. j)/2IAzAz 

where u is the horizontal and w the vertical wind speed, 
Ax and Az are the grid intervals. The right side of 
equation (7) will hereafter be referred to as GRADT. 
How well these two sides of the equation agree after 
calculation of the various quantities in the numerical 
integrations of the basic equations gives some idea of the 
effect of the truncation error on the solution. 
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FIGURE 1.-Changes of kinetic energy and GRADT versus time 
for the upstream-differencing method. The ordinate has units of 
m-2 s ~ c - ~ .  The abscissa is time in minutes. The solid curve 
refers to changes in kinetic energy, and the dashed curve is the 
change for GRADT, the sources and sinks of this energy. 

Figure 1 graphs this change in kinetic energy versus 
the source and sink terms for upstream differencing. The 
discrepancy in the curves is due to the fact that the 
numerical diffusion of the upstream-differencing term 
is not represented on. the right side of equation (7). Im- 
plicit numerical diffusion equivalent to Fickian diffusion 
with a K=35 m2 sec-l is present (Molenkamp 1968). If 
we assume a K' as the eddy diffusion coefficient for the 
implicit mixing, then a +K'V2q term would tend to de- 
crease the absolute magnitude of GRADT. This occurs 
because the implicit diffusion term is of opposite sign to 

the - - term which is the largest term in equation (7) 

in general. Thus the discrepancy is in the right direction. 
Figures 2A,B show the results of the second-order and 

fourth-order advection schemes of Crowley applied to 
the advective form of the equations. The kinetic energy 
is conserved at  all times within a few percent in the second- 
order scheme, which appears to  be best in this respect. 

In  addition, the results concerning the evolution of 
stream function, potential temperature, water vapor, 
cloud liquid mater, and the cloud formation are at  all 
times quite similar to those for upstream differencing 
except that less damping is evident. This is evidenced by 
the earlier appearance of cloud in the higher order schemes, 
at  approximately 123 min versus 131 min in the first- 
order method, as seen in figure 3, a graph of maximum 
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FIGURE Z.--Sarne as figure 1 except (A) is for Crowley's second- 
order method and (B) represents curves for kinetic energy changes 
and GRADT for Crowley's fourth-order method. 

liquid water content versus time for the three integrations. 
Earlier cloud formation correlating with the smaller 
diffusion has been characteristic of the symmetric models 
using upstream differencing (Orville 1968b). 

4. AMBIENT WIND CASE 

These results of the higher order techniques applied to 
the symmetric model have been quite satisfying. They 
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FIGURE 3.-Variations with time of maximum cloud liquid water 
content. B1, B2, and B4 refer to  upstream differencing, Crowley's 
second-order and Crowley's fourth-order method, respectively. 
AWBl and AWB2 refer to upstream differencing and Crowley's 
second-order method in the ambient-wind case. 

may be used to establish the fact that the numerical 
diffusion is reduced considerably in the higher order 
schemes applied to  this particular numerical model. This 
is important to establish since the conservation equation 
for kinetic energy is not so easily derived in the ambient 
wind models, principally because mass inflow is not 
necessarily matched by mass outflow through the sides 
and the influence of the mountain as an obstacle to the 
flow is difficult to account for energetically. 

We have applied the second-order advection technique 
to an ambient wind model, one with constant wind shear 
initially from the mountain peak to the top of the grid 
(case B of Orville 1968~). A characteristic of this ambient 
wind model with upstream differencing is that a cloud 
forms a t  100 min of integration time, grows, and dissipates 
in place in about 40 min as shown in figure 4. When the 
second-order advection scheme of Crowley was applied 
to  the same model (in particular, K=40 m2 sec-l), no 
cloud formed. This was disconcerting, so attempts were 
made to attain correspondence between the models by 
varying the eddy coefficient in the second-order method. 

Since the numerical damping of the upstream differ- 
encing has been eliminated by the second-order scheme, 
the total diffusion is less in the second-order scheme than 
in the first-order method. An attempt was made to model 
the numerical damping in an explicit fashion in the 
second-order scheme by defining a K' as 

K'= (1 /Z)C[ 1 - G (At/As)]As 

MODEL 15 U S E  'E' 
3D I 

FIGURE 4.-Outline of the numerical cloud showing its life cycle. 
The curves are given for every 3 rnin during the lifetime of the 
cloud. The solid curves are for its growth period, and the dashed 
curves are for its dissipation. The cloud outlines are for all regions 
in the model where 100 percent relative humidity and liquid water 
are present. 

where K' is the numerical eddy coefficient to be multiplied 
times the second derivative of the diffused field and is 
variable from grid point to grid point, G is the absolute 
magnitude of the u or w velocity, As represenh Ax or Az, 
the space increments in the model. With this simulation 
the numerical model acted more like the second-order 
scheme than the firsborder scheme, and hence using this 
technique to obtain correspondence between the two mod- 
els was not successful. 

It is possible to increase the diffusion in the second-order 
model by increasing K in the Fickian diffusion terms (at 
the mountain slopes and valley surface as well as in the 
main flow region). With K increased by a factor of 4 over 
the entire region of integration, still no cloud forms in the 
model. The results are smoother than with the K=40 
mz sec-' case, as shown in figures 5 and 6 for K=40 and 
160 m2 sec-', respectively. 

It is not until the eddy coefficient is increased by a 
factor of 2 in all areas of the model that a solution com- 
parable to the first-order scheme emerges. A cloud forms 
in 112 min and grows and dissipates in situ downwind of 
the mountain. Its entire life history is quite similar to 
that for upstream differencing. The solution for K=80 
m2 sec-' at  126 min of model time is shown in figure 7. 
Figure 8 shows the cloud growth curve for this case, the 
cloud lasting for about 32 min. 

These solutions indicate that the upstream-differencing 
method and the second-order advection technique of 
Crowley give comparable solutions if the Crowley method 
uses a K-value increased by a factor of 2 over that of the 
upstream differencing that had K ' s  of 40 m2 sec-I. 

These results also indicate the crucial importance that 
mixing has on the initiation of cumulus clouds over 
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FIGURE 5.-Fields of motion, potential temperature, and water 
vapor a t  127 min for an ambient-wind case using Crowley's 
second-order method. The eddy coefficient K=40 m2 sec-I. The 
dashed lines are streamlines in m2 sec-', the solid lines are potential 
temperature deviations in degrees Kelvin or Celsius from the 
base state of 296"K, and the dot-dashed lines are isohumes in 
gm kg-1. Real time in minutes is in the upper right-hand corner. 
No cloud is initiated in this case. 
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FIGURE &-Fields of motion, potential temperature, and water 
vapor a t  126 rnin in an ambient-wind case using Crowley's 
second-order method ,with an eddy coefficient K= 160 m2 sec-1. 
Significance of the isolines is the same as in figure 5. No cloud 
is initiated in this model. 

mountains. If the eddy diffusion coefficient is too small 
(K=40 m2 sec-l, CM-2) not enough heat and moisture 
are diffused from the slopes to create slope circulations 
of great enough strength to penetrate significantly the 
horizontal winds aloft. If the Fickian mixing is too large 
(K= 160 m2 sec-', CM-2), only small horizontal gradients 
in temperature and vapor are created which in turn lead 
to only weak slope circulations. An intermediate value of 
turbulent diffusion (K=80 m2 sec-', CM-2 and K=40 
m2 sec-', UD) leads to  the establishment of relatively 
large horizontal gradients and strong slope circulations 
that are able to penetrate into the environmental flow 
aloft and reach the condensation level. Upstream differ- 
encing aids this process by diffusing more strongly in the 
downwind direction (upward) ; hence an explicit diffusion 
coefficient of 40 m2 sec-' with the UD method gives 
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FIGURE 7.-Fields of motion, potential temperature, and water 
vapor at 126 min in an ambient-wind case using Crowley's 
second-order method with an eddy coefficient K=80 m2 sec-1. 
The lines have the same significancc as in the previous two 
figures with the addition that the slanted line area depicts cloud 
water content. The dots within the slanted line area depict 
rainwater content. 
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FIGURE 8.-Life cycle of the cloud shown in figure 7 is depicted here. 
The outlines are for every 3 rnin during the cloud life cycle with 
the solid lines indicating growth and the dashed lines indicating 
dissipation. 

equivalent results to the CM-2 method with K=80 
m2 sec-'. 

5. NUMERICAL DIFFUSION OF RAINWATER 

In  section.1 it was mentioned that one advantage of 
higher order differencing schemes might be the elimina- 
tion of diffusion of rainwater caused by the upstream 
numerical method. I n  order to test this hypothesis, cloud 
models using Crowley's second-order technique and the 
upstream-diff erencing method were brought into corre- 
spondence with respect to cloud initiation times (starting 
from the same record on a history tape holding the second- 
order method results at  105 min). The cloud formed a t  
112.500 rnin in the Crowley model and 112.625 rnin in the 
upstream-differencing model, a difference of one time step. 
This correspondence was obtained by adjusting the K- 
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FIGURE 9.-Field of rainwater content a t  126 min for the upstream- 
differencing method, ambient-wind case. The isolines are in units 
of 10-6 gm gm-I. The dashed line encloses all values equal to or 
greater than 5X10-* gm gm-l. No explicit mixing has occurred 
in this model for rainwater, that  is, the eddy coefficient for 
rainwater equals 0. No evaporation of rainwater occurs. 

value in the upstream model to  10 m2 sec-'. In  addition, 
the evaporation parameter was set to zero in both models 
so that all the rain that formed would remain in the model 
to be advected and numerically diffused. There is no 
expplicit diffusion of rainwater in the numerical models. 

The results may best be seen in figures 9 and 10 showing 
the rainwater content at  126.0 min for the upstream 
differencing and Crowley's method, respectively. The 
cloud water and other atmospheric variables are nearly 
identical to  the fields in figure 7. The dashed line in figure 
9 shows the extent of rainwater a t  least as large as 5 x  
gm gm-' and in figure 10 at  least as large as 5X10-g gm 
gm-' so that the zero line for the Crowley method (fig. 10) 
encloses rainwater contents an order of magnitude smaller 
than the zero line in figure 9 for upstream differencing. 
The solid lines in both figures are for intervals of gm 
gm-' as analyzed by computer subroutines. The rainwater 
content is larger in figure 9, due indirectly to the size of 
the eddy coefficient (only 10 m2 sec-' compared to 80 m2 
sec-' in fig. 10). The effect is indirect because rainwater 
has no explicit diffusion. However, the fields of entropy 
and total cloud water (vapor plus liquid) are diffused ex- 
plicitly. The explicit mixing of these fields causes the cloud 
mater to be reduced in the high diffusion case and hence 
the transformation from cloud water to rainwater is 
slower. This is particularly true in the interior of the cloud 
where the maximum rainwater content is .009 gm kg-' 
compared to .006 gm kg-' in the Crowley method (fig. 
10). Downwind, this difference has widened so that the 
upstream method gives values an order of magnitude 
greater than the Crowley method due largely, we think, to 
the diffusion characteristics of the numerical method. The 
upstream method is considerably smoother than the 
Crowley method as indicated by the dashed lines. Never- 
theless, the smaller numerical diffusion of the second- 
order method would appear to us to make it preferable to 
the first-order technique for precipitation models. 

31) I I .  I 
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FIGURE 10.-Field of rainwater content at 126 min for the Crowley 
second-order method, ambient-wind case. The units for the 
isolines are the same as in figure 9. However, the dashed line 
encloses all rainwater content equal or greater than 5 x 1 0 - 8  
gm gm-1. No mixing or evaporation of rainwater occurs. 

6. CONCLUSIONS 
The Crowley second-order scheme gives results com- 

parable to the upstream-differencing technique if the eddy 
coefficients in the Fickian diffusion terms are adjusted. 
Crowley's fourth-order advection method gives results 
not obviously better than the second-order advection 
method on the symmetric cases. Numerical damping is 
considerably reduced in the Crowley methods and the 
kinetic energy is approximately conserved by the non- 
linear advective terms. The second-order method should 
prove quite useful in local scale numerical models of clouds 
and precipitation. It is more economical than the fourth- 
order method, and leads to fewer boundary problems. For 
practical use of the schemes, we would suggest that the 
second-order scheme be used due to the decreased amount 
of machine time required and simpler boundary computa- 
tions compared to the fourth-order technique. 

Prior results of Orville (1965, 1968a) using upstream 
differencing represent solutions to  the basic equations of 
the model with a K-value of approximately twice that 
which is shown explicitly (this applies to the K=40 m2 
sec-' cases only). 

The fact that clouds form for only a restricted range 
of the eddy coefficient gives hope that when several of the 
methods for modeling turbulence are compared with 
observations the proper method may be selected for these 
local scale problems. We do not know the proper K-value 
or functional form. Several candidates exist (Lilly 1967, 
Smagorinsky 1963, Leith 1968, Fick, etc.). In  addition, 
models in three dimensions will modify these results and 
pose other questions about the correct specification of 
turbulence parameters. Nevertheless, the connection 
between the formation of clouds and the various model 
parameters have interesting observational implications. 
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