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ABSTRACT-Probability density distributions are derived 
and verified for the distance from a n  arbitrary point to  
stations randomly distributed in the plane. These distri- 

butions are essential to  the analysis of the filtering prop- 
erties of objective analysis schemes. 

1. INTRODUCTION 

Arithmetic operations on data arrays derived from 
space- or time-sampling of continuous fields lead to 
spectral modification of the signal. The alteration for 
linear operations on regularly spaced data can be de- 
termined exactly with a discrete transform approach. 
However, even with linear operators acting on a band- 
limited signal, the analysis for irregularly distributed 
data is usually complicated by the nonstationary sampling 
pattern over the domain. Only an average response can 
be obtained for nonstationary patterns, and that is 
subject to modeling approximations to the distribution of 
data. Analysis leading to the appropriate power transfer 
function requires a characterization of the probability 
distribution of data locations from a randomly selected 
poini. 

The modeling approximation used by Stephens and 
Stitt (1970) and Stephens and Polan (1971) presumed a 
random distribution of observing sites in the plane. 
However, the distance distribution used in determining 
the power transfer function was fitted empirically. While 
valid, their results are not readily utilized because the 
distribution form was incorrect. A theoretical formulation 
of the distribution is given and verified here. 

2. DISTANCE DISTRIBUTIONS 

The modeling approximation used here assumes that the 
observation sites are randomly distributed in the plane. 
The number of stations to be found in an area then follows 
the Poisson distribution (Parzen 1960). If the average 
station density, T ,  is 

(1) 
N ;i=lim - 

~ - i m  A 

where N is the number of stations in the area, A, then the 
probability that exactly n stations are in A is 
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An operational definition of the average station separa- 
tion, d ,  is given by regarding A in terms of an equivalent 
rectangular region divided into N equal, square cells. It 
follows that i=1,’d2. Further, the average number of 
stations within a radius p about an arbitrary point in the 
field is 

N(p)=SzrSp ;ir dr de=- SP2. d2 - 
0 0  

If attention is restricted to integers N(p,) =m, then 

(3) 

(4) 

As will be shown below, p: is to be interpreted as the 
expected value of the square of the distance to the mth 
station, not as the square of the average distance. 

If A is a circle described by the radius, T ,  from an 
arbitrary point in the field, then eq (2) can be written as 

(5) 

The probability that n or more stations are within r is 

P[N(T)  ~ ~ ] = P [ N ( T )  zn-l]-P[N(~)=n-l]. (6) 

This is a cumulative distribution in T .  The probability 
density for the distance to the nth station is then given by 

This can be shown by induction to be 

(9) ’ 

2rzn-1 

(n- 1) ! p;n f n ( r )  = ; n=1,2,3,. . . . e--r=lPf (10) 
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The distribution is normalized for each n. The average TABLE 1.-Ratios of the f irst  and second moments observed with theo- 
retical values obtained f rom the probability density. +values f o r  
goodness-of-fit over 31 class intervals are shown for  the first five 

distance to the nth station is 

d (2n-l)!! ?.=som rf.(r>dr= 2”(n-l)! 
ordered stations. 

(11) 
Station Observed mean Observed variance 
number X a  Theoretical mean Theoretical variance where (2n-1)!!=1.3.5.. .(2n-l). The variance is 

-~ 

as expected from eq (4). 

1 
2 

1. 0003 
0.9974 

1.0034 
0.9949 

23. 4 
28. 6 

3 0. 9979 0. 9956 26. 0 
4 0. 9983 0. 9969 22. 0 
5 0.9977 0.9959 32. 8 

3. VERIFICATION AND CONCLUSIONS 

To verify eq (lo), we chose station locations with a 
pseudo-random number generator in a square domain of 
dimensions 100 by 100 in arbitrary units. Another point 
was chosen at  random within a centered 20 by 20 sub- 
region. Distances for the closest five stations were collected 
and stratified in intervals of 0.05 d. For the computations 
here, d=4 units. The experiment was repeated 21,000 
times. In  each instance, a new station array and reference 
point were generated. The ensemble of realizations was 
used in lieu of a larger domain. 

The experimental results are summarized in table 1. 
The average distance and variance for each ordered 
station are shown as ratios with the values expected from 
eq (11) and (12). The largest discrepancy is 0.51 percent. 
The results of a X2-test of goodness-of-fit are also shown. 
Class intervals were grouped on the wings of the distribu- 
tions so that a total of 31 intervals, or 30 degrees of 
freedom, were obtained for each station. Since the 5 

percent critical value of x2 for 30 degrees of freedom is 
x2,=43.77, there would be no basis for rejecting the 
hypothesis that eq (10) describes the distance distribution. 
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