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ABSTRACT 

First, second, and fourth order finite difference approximations to  the color equation in both advection and 
conservation form are considered in one and two space dimensions. All schemes considered arc based on forward 
time differences and most involve centered space differences. All are shown to bc numerically stable for (uAt/Asl  5 1. 
Test calculations indicate that  for the same order of accuracy, the conservation form produces more accurate solutions 
than the advection form. For either conservation or advection form, fourth order schemes are shown to be more 
accurate than second or first order schemes in terms of both amplitudc and phase errors. 

I. ONTW N 

Both analytic and numerical solutions of the Eulerian 
equations of hydrodynamics are limited in extent by the 
nonlinear advection, or transport terms. Analytic solutions 
are difficult to  obtain because the advection terms render 
the equations nonlinear. Numerical solutions are readily 
secured in principle but are inaccurate because finite dif- 
ference approximations of the advection terms can intro- 
duce errors in both phase and amplitude. This paper deals 
with several different methods of numerically modeling 
the advective process. 

The continuity equation and the Euler equations, for 
flows with neither sources, sinks, nor body forces, are 

%+u'uk,i=--p,k. 1 
dt P 

Equation (1) may be combined with (2) to  give 

(3) 

Equations (1) and (3) are in the so-called conservation 
form; mass and momentum transports appear as diver- 
gences of mass and momentum fluxes. Green's theorem 
may be used to transform these terms to surface integrals, 

I This work was performed under the auspices of the U S .  Atomic Euerey Commission. 

and this leads to  particularly satisfying finite difference 
approximations in which mass and momentum are identi- 
cally conserved [8]. 

Equation (2) is in advection form. Although based on 
reasonable physical arguments, finite difference approxi- 
mations to the advective vector (uiuk, i) do not necessarily 
contain momentum conservation. 

Equations (1) and (2) describe the same physical situ- 
ation as equations (1) and (3) ; for identical boundary and 
initial conditions, the two sets must give the same exact 
solution. Since there is no unique way of writing finite 
difference approximations to partial derivatives, the 
numerical solutions from the two sets of difference equa- 
tions are expected to  be different. They must, however, 
approach the exact solution as At and Ax approach zero. 

Roberts and Weiss [ll] have examined second and 
fourth order numerical schemes for equations in conserva- 
tion form. Bryan [I] has pointed out that a numerical non- 
linear instability can be eliminated by properly diff erenc- 
ing equations in conservation form. The well known 
Lax-Wendroff scheme [4] is based on the equations being 
in conservation form, and has been used with remarkable 
success by Burstein [2] in two dimensional compressible 
hydrodynamic calculations. 

In order to  obtain the advantages offered by conserva- 
tion form, the finite difference equations must be properly 
composed with respect to  accuracy, numerical stability, 
and conservation. In certain coordinate systems, however, 
proper evaluation of the transport terms may lead to  quite 
complicated algebraic forms that can be relatively time 
consuming to  compute. On the other hand, the advection 
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form may give simpler and thus cheaper, difference equa- 
tions. Even if one is then forced to use the advection form 
rather than the conservation form by practical matters, 
such as limited available computer time, it is possible that 
the trade-off of accuracy for efficiency will not cause the 
results to be utterly unreliable. Although the advection 
form of the equations does not guarantee conservation, it 
does not follow that the proper quantities will not be 
approximately conserved. 

The dependent variables in the partial differential 
equations of interest are generally all functions of space 
and time, so that both time derivatives and space deriva- 
tives must be numerically approximated. Since the evolu- 
tion of these quantities in time is desired, the usual 
approach is to  use space derivatives to  evaluate time 
derivatives. This may be accomplished by implicit methods 
[6] ,  centered methods [lo], or so-called one-sided methods. 
In  the (forward) one-sided method, values of the space 
derivative a t  time t are used to estimate the time derivative 
at  t+At/2 and to thus advance the state of the system to 
time t+At. Space derivatives may be either one-sided, or 
centered, and examples of both will be given, but centered 
space derivatives and forward time derivatives will be of 
primary interest. 

The intent of this paper is thus to examine several 
different finite difference approximations to  the advective 
process. First, second, and fourth order schemes for 
equations in both advection and conservation form are 
analyzed. It is shown that all schemes are stable for 
] u A t / A x l S  1, but that each scheme introduces both phase 
and amplitude errors. These errors, for the linear case, 
can be calculated and are displayed as contour plots. 
Results of test calculations in one and two space dimen- 
sions are also given. 

In  order to examine the problems of numerical advection, 
finite difference approximations to the color equation 

(4) 

in Cartesian coordinates will be analyzed, where #=$ 
(5, y, t ) .  An equivalent form of (4) is 

( 5 )  

The dependent variable $ is some property (nondiffusive 
color, say) of the fluid that is transported along by the 
flow field so that its total derivative along an instantaneous 
streamline is zero. That is, equations (4) and (5) when 
written with respect to an observer who moves with the 
fluid simplify to 

3 Equation (4 )  was ivained the "oolor" [quatioil i n  Ihc cavly 1950's I)y H .  IA~I~wiN'who 
noted that + hm tlir properties of :L nolidiffusive color. 

so that the observer will measure no change in $ as time 
passes. This notion will be used in forming the difference 
equations for the advection form of the color equation. 

Equation (4) is the advection form of the color equation 
and equation (5) is the conservation form of that equation. 
It is emphasized that this equation is written in two 
different forms because each lends itself to  a finite differ- 
ence approximation based on a particular physical argu- 
ment, but that the same solution is expected from both 
cases. 

For simplicity u and v, the components of velocity in 
the x and y directions, respectively, will be assumed to be 
specified functions of space but independent of time 
although in general they may be time dependent also. 

3. ONE DIMENSIONAL ADVECTION FORMULATION 
The color equation in advection form in one space 

dimension is 
!2+u a$ 
at as 

where now $=$(x, t ) .  
If u is a constant, and #(x, O)=f(x) ,  a solution is 

$(x, t)=f(x--ut) (6) 

and this furnishes the basis for the following finite differ- 
ence approximation. 

Let $y=$(jAx, N A t )  where j and N are integers. 
$?is then known at the intersection of i\. space-time 
lattice. Given $y, for all j ,  in order to  compute $;+l, one 
constructs a characteristic (of slope 6x/6t=u) through the 
points ( jAx ,  ( N f 1 ) A t )  and ( ( j+r )Ax ,  N A t )  where r' is not 
necessarily an integer (fig. 1). Equation (6) then states 

+((jAz, (N+ 1) At) = $*=+( G - b )  A X ,  N A t )  

where 6x=-rAx. Since r is not in general an integer it is 
necessary to  interpolate on the #? field to  determine $*. 
Interpolation on the three points j - 1 ,  j ,  j + l  results in 

where a=uAt/Ax, and $ is thus advanced in time by 
setting 

$?+I $ *. 

Limiting this to  an interpolation procedure requires that 

The above result may also be obtained by a Taylor 
series expansion in time, which will display the order of 
the truncation errors 

l4<1. 

Using the differential equation to  convert time derivatives 
to space derivatives yields 
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and evaluation of b $ / d x  and b2$ /dx2  to second order 
gives 

-k 0(&x3)+O(At2 )  (8) 

where the term O(At2)  occurs in the general case where 
u = u ( x ,  t ) .  Thus the evaluation of p + 1  by (8) has errors 
of order At2 and Ax3 and this is usually referred to as a 
second order scheme, although it is only first order ac- 
curate in time. 

In  order to make the notation less cumbersome, spatial 
differences will from now on be written in terms of linear 
difference operators which will be represented by capital 
roman letters. Schemes based on forward- time differences 
are thus in general written 

where $ is a vector with components $ 1 ,  $z, . . ., $.,; 
A is the spatial difference operator, and The 
particular scheme just discussed (the quadratic advec- 
tion Scheme) has the operator 

If the interpolation for $* is carried out on a curve 
obtained by fitting the five points surrounding j with a 
polynomial, a "fourth order" scheme is produced with 
the operator. 

J 

FIGURE 1.-Advection diagram. 

For completeness, two more types of schemes are given 
below. The first originated with Lelevier [9] and is an 
example of a first order scheme. I t  contains an appreciable 
amount of numerical damping, which makes i t  unsuitable 
for problems involving relatively long integration times. 

A t  A t  
(A$ 1, = (%- 1% I 1 ($,+I - $1) KX+ (u,+ 1% I 1 ($, - $,-l) 282' 

(12) 

Thus the scheme involves choosing a one-sided space 
derivative of $ from the "upstream" direction. I t  wiib 
used in some early (1958) two dimensional compressible 
hydrodynamic calculations, but was discarded soon 
thereafter for a scheme in conservation form [8] in which, 
however, the one-sided space differences were retained. 

The second type involves third order errors in time 
[lo, 31. These schemes may for example involve two step 
processes in which lower order intermediate results :ire 
first calculated u t  t + A t / 2 .  These and the function at 
time t are then combined to give the final, higher order 
result a t  t + A t .  

The process is represented symbolically by, 

$by+'=[( I-C)$" 1, 
where 

a4 
-- 24 [6$,-4($,+1+$,-1)+($,+2+$~-~)1. (l1) which results in u scheme second order accurate in both 

space and time. 
Thus 

4. ONE DIMENSIONAL CONSERVATION 
a$  AX)' d v  ( c Y A x ) ~  as$ (aAx')' 3% FORMULATION 
ax 2 a X 2 + ~ s - 7  G The conservation form of the color equation in one 

( A 4 $ ) j = a ~ ~  - 

space dimension is 
- O(aAx5)+  0 ( a 2 A x 6 )  - O(a3Ax5)+ O(a4Ax6) .  

-+--$ w -=o. du 
Since a-1, this operator is then fourth order accurate in d t  a x  ds 
space but since the time and spatial variation in u are still 
not accounted for, i t  also has errors O(At2)  as does the 
previous scheme.. 

If the term accounting for the transport of + by the fluid, 
b $ u / b x ,  is thought of as the divergence of a AIIX, appli- 
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cation of Green's theorem [7] then predicts that in any 
zone the decrease of $ with time is proportional to the 
net flux out of the zone (modified in this case by the 
compression term $bulbs). 

The flux across a zone boundary a t  j+y2 is 

Assuming $ to vary linearly between # j  and $j+l and 
integrating equation (14) results in 

If $ is assumed to fit a cubic through j-1,  j ,  j+l, 
j+2,  evaluation of (14) gives 

A t  a 
Ax 16 F,+1/2 -=- [9($,+1+#,)- (#,+2+$j-1)1 

CY2 

48 

a 3  

12 

-- [27($,+1-$,) - ($,+2-$i-1)1 

-- [($,+1+#,)- (9,+2+#r-1)1 

a4 +z [3 ($i+l- $1) - (#r+2- $i-1)1 ( 16) 

where a=ai+llz. 
A second order flux divergence scheme is then given by 

(17) 

where Fj+1/2 is given by (15), and .a fourth order flux 
divergence scheme is 

-(uj+3/2-ui-3/2) 1 -E (FY+I/z-FY-I/~) (18) 1 At 

where Pi+% is given by (16) and d u / d x l ,  has been evalu- 
ated to fourth order. 

It is clear that the transport term leads to identical 
conservation of $ since the only net flux into the total 
system occurs a t  the boundaries, all interior fluxes balanc- 
ing out. 

It is seen by comparing equations (15) and (16) with 
(10) and (11) that in a Cartesian coordinate system at  
least, the advection and conservation forms require 
approximately the same number of arithmetic operations 
per point. This is probably true for scalars in most co- 
ordinate systems. Unfortunately, correctly approximating 
the divergence of a tensor on a nonrectilinear coordinate 
system involves an increase in the number of arithmetic 
operations necessary per point, and so in some cases it 
may be necessary for reasons of economy to use the 

advection form for the momentum equation. An example 
-of this is the momentum equation on a spherical coordinate 
sys tem. 

A count of arithmetic operations shows that the second 
order advection operator requires 5 multiplies and 6 
additions per point while the fourth order advection 
operator requires 13 multiplies and 18 additions per 
point. The increased accuracy thus costs a factor of three 
in computing speed. 

5. STABILITY ANALYSIS 

A solution of the color equation is 

#(x ,  t ) = e i U z - u l )  - -$(x,  O)e-'""' 

so that the initial configuration $ ( x ,  0 )  is merely translated 
a distance ut in time t and the solution after a time 
interval A t  has a phase angle -kuAt= -ea where e = 
k A x .  There is no amplitude damping. 

For the difference equations, phase and amplitude 
errors as well as a necessary condition for stability are 
given by the eigenvalues of (I-A) in equation (9).3 
Substitution of an eigenvector for #i in (9) results 
in the recursion yF+'=t(k)$N where t(k) is a complex 
eigenvalue of a particular difference operator. For the 
difference equations considered here, which employ one- 
sided time derivatives, 1.$1#1 so that an amplitude 
modification occurs each cycle. Since stability dictates 
that It15 1 and the analytic solution involves no amplitude 
damping, it is desirable for t to  be as close to the unit 
circle (but not outside) as possible. The phase angle is, 
from the numerical solution in time At,  

6 =  tan-' [Im (()/Re (()I 

and in general 6z -h  Thus the relative errors in 
amplitude and phase in a time increment At are 1-141 
and 1 -66/ea, respectively. 

Substituting etlcjAz for #i into (10) and (11) in turn, it is 
readily seen that the eigenvalues of I-A are 

[2=1--Ly2(1-cos e)-& sin 8 (19) 
and 

CY2 CY4 

12 t4=i-- (15-16 COS e+cos 2e)+- 12 (3-4 COS e+cos 2e) 

a3 -i{; (8 sin 6-sin 20)+- 6 (-2 sin o+sin 20)). (20) 

The magnitude of t2 is then 

Itz) 2= 1 -d( 1 -d) ( 1 -COS e)' 

3 If the matrix of B is normal, then a necessary and sufficient condition for the stability 
of )N+I=B+N is I r l < l  where r is the maximum eigenvalue of I3 191. If B is not normal, 
then Ir ls l  is necessary but not sufficient for stability. In practice R is rarely normal but 
it is found that the restriction l r l s l  usually prevents the occurrence of instabilitics. 
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so that stability is guaranteed by a25  1. The magnitude of 
E4 is 

f f2 

36 I$+i-- (i-ff2)(i-cos e)y((., e)  

j ( f f ,  e)=(i-cOs e)ff4-(9-5 COS e ) f f 2 + 4 ( 5 - ~ ~ ~  e). 
where 

Let F(a)=f(a,o) where o is any (fixed) value of e. The 
roots of F(a) are then 1 2  and f1/(5-cos w)/(l-cos u). 
From this it is seen that since F(a)>O for a2<3, the 
fourth order advection scheme is stable for 2 1 1 .  

Evaluation of the eigenvalues of the operators used in 
the conservation form is accomplished by assuming a to 
be a constant which then reduces the conservation equa- 
tions to (9). The eigenvalues for the second order scheme 
turn out to be the same for conservation and advection 
forms, but the fourth order-conservation form has the 
eigenvalues, 

CY2 a;' 
24 12 54c=1-- (27-28 COS e+cos 2e)+- (3-4 COS e+cos 2e) 

The magnitude of [ 4 c  is 

a' 
144 1 i 4 ~ 1 2 = i  - - (1 --COS e)2g(ff, e )  

g ( f f ,  e)=87-72 COS e+g C O S ~ ~ - ~ ~ ( ~ - C O S  el(97-25 COS e) 
+ 4 a y i - ~ ~ ~  e)(9-5 COS e ) - - 4 a 6 ( i - ~ ~ ~  e)z. 

where 

It can be shown that 154c12 has extrema at  e=o and T ,  

but since 154e12=1 for e=o, the extremum a t  e=T i s  the 
one of concern since i t  can result in numerical instabilities. 
(It is usually true that the higher wave numbers are the 
least stable.) 

Evaluation of &,e) a t  e=T results in 

g ( a, T )  = 16 (1.5 - CY') (2 - a2) (3.5 - a') 

so that the fourth order conservation scheme is stable for 
a2<1.5. 

In  order to further examine the relationship of the 
solution obtained by difference approximations to the 
analytic solution, contour plots of 141 and of relative 
phase as functions of B / T  and a have been constructed 
(figs. 2-11). In  these figures, the contour interval is 0.1; 
functional values less than one are plotted as broken 
lines while solid lines represent values greater than or 
equal to one. 

Figures 2 through 6 present level lines of 151 for the 
several difference schemes discussed here. Since dotted 
lines cover numerically stable regions it is seen that all 
schemes are stable for all wave numbers if la1 5 1. Further, 
the fourth order conservation scheme is stable for a2<1.5 
while the two-step second order scheme is stable if 
1~x152, and has very little damping for )al<1. 

2.0- 

1.5- 

1 .o- 

I -  ul A t  
A x  
.5 - 

0- 

I 
0 

/ 
I 

I 
I 
I 
\ 
\ 
\ 
\ . 

\ 

.5 

k A x/r 
1.0 

FIGURE 2.-Level lines of for equation (12) (first order) as :L 
function of S / r  and CY. The contour interval is 0.1; brokcn lines 
represent constant values of 1 and solid lines represent 
constant values of 151 21. Figures 2 through 11 all iisc the same 
plotting convention. 

Figures 7 through 11 are level lines of the relative 
phase, --/ea as a function of wave number and CY as 
computed for the difference schemes discussed here. It is 
seen that for most schemes, in the stable region, the 
contours are broken lines indicating that waves in the 
numerical solution move more slowly than they analyt- 
ically should. 

The figures for one step forward time differences all 
have the same characteristics. For a fixed value of C Y ,  

both amplitude and phase errors increase as e increases, 
becoming maximum for e=T. This is the highest wave 
number a given mesh can support and this wave has IL 
zero relative phase velocity. Fortunately, maximum 
damping occurs at this same wave number so that the 
numerical amplitude error compensates for the relative 
phase error in this case. For a given wave number the 
amplitude damping goes through IL maximum as a rum 
from zero to one. In a perverse manner, the phase error 
goes through a minimum for the same range of a,  so that 
once again the damping error compensates for the phase 
error, but in an undesirable way this time. For low wave 
numbers, the,phase error is less for a = l  than for a=O. 
Thus calculations for which (Y is small will suffer large 
phase errors but less than maximum damping, nnd 
calculations for which a is near unity will also hiLve less 
than maximum damping but will have smaller j)litise 
errors. Intermediate values will result in small phase 
errors, but large amplitude errors. 
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FIGURE 3.-Level lines of for equation (17) (linearized) or (10) 
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and (9) (second order). 

1 .o 

FIGURE 4.-Level lines of for equation (13) (second order, 
two-step). 

It is seen that the fourth order conservation form 
(fig. 11) has a greater relative phase error than the fourth 
order advection form (fig. lo), but that i t  still is an im- 
provement over lower order schemes. 
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Ax 
.5 - 

0- 1 1 , 1 1 1 1 1 1 1 1 1 1 1 1 1  

.5 1 .o 
kAX/lT 

FIGURE 5.-Level lines of IEl for equations (11) and (9) (fourth 
order). 
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FIGURE 6.-Level lines of IE l  for equation (18) (fourth order, 
conservation). 

Comparison of figures 2 and 3 shows that the second 
order scheme has appreciably less damping than the 
first order scheme, but figures 7 and 8 indicate that the 
second order scheme has a slightly greater phase error 
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2.0- 

1.5-  
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l u l a t  
Ax 
.5 - 

0- 

1 .o 

FIGURE 7.-Level lines of --/ea, the relative phase for equation 
(12) (first order). (For constant u, the correct phase is - 0 a .  
The phase for solutions generated by the difference scheme is 6.) 
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FIGURE 8.-Level lines of -6/00r for equa,t.ion (17) (linearized) or 
(10) and (9) (second order). 

a t  each wave number (for low a)  which becomes larger 
as a increases. 

The two-step procedure (compare fig. 9 with fig. 8 )  
tends to linearize the phase error in that it is almost 

284-383 0 - 6 8  - 2 

Crowley 

2.0- 

1.5- 

1 .o- 

lu lat  
Ax 
.5 - 

0- t 
0 .5 1 .o 

k A X/T 

FIGURE 9.-Level lines of --/eol for equation (13) (second order, 
two-step). 
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1.5. 

1 .o- 
? 
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0 .5 1 .o 
k A X/T 

FIGURE 10.-Level lines of - - /ea  for equations (11) and (9) 
(fourth- order). 

independent of a, a t  least for a < l .  This then does not 
improve the accuracy, but does tend to make the phase 
error more predictable. 
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0 .5 
k A X/K 
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FIGURE 11.-Level lines of -6/& for equation (18) (fourth order, 
conservation). 

6. ONE DIMENSIONAL CALCULATIONS 

It can be shown that given #(x,O)=f(log u), u=ax+b 
(a and b constants), a solution of 

a* a* -+u -=o a t  ax 
is 

*(x, t) =f (log u-at). 

Thus given a flow in which the divergence of the 
velocity field is a constant in space and time and the 
initial + configuration is any function of the logarithm of 
that velocity field, the value of $(x, t) is determined for 
t 2 o .  

This solution differs from the usual wave equation 
type of solution (equation (6)) in that the velocity need 
not be a constant. Since in the test problems the velocity 
field is chosen not to be a constant in space, the term 
J.  buldx does not drop out of the conservation form and 
a realistic test of advection versus conservation is achieved. 

The test calculation used to obtain solutions from the 
various difference schemes is the following. In  the interval 
O<xIL/2,  u=0.9-1.6x/L and for L/2 I x I L ,  ?L= 

-0.7+1.6x/L where L is some length. Initial conditions 
are generated from the u field to be +(x, O)=log ZL. Peri- 
odic spatial boundary conditions, $(O, t) =#(L, t ) ,  are 
imposed. 

Figures 12 and 13 give results of one dimensional test 
calculations from various difference schemes. In both 
figures, curve A' is a plot of uAt/Ax, and curve A is 
$(x, 0), the initial # configuration for all tests. In  all 
calculations, At/Ax=l so that (Y varies between 0.1 and 0.9. 

;;-_I 0.2 

O A  
- 0.2 c\ 

-1.0 
-1.2 
-1.4 \ 

-1.8 
- 2.0 

D - S E C O N D O R D E R  - 
CONS E RVATION 

-2.2 
-2.4 E- F O U R T H  ORDER C O N S E R V A T I O N  

- 2 . 6 ~ " 1 1 1 " " 1 i 1 " ' 1 ' 1 1 " 1 ' 1 ' ' 1 1 1 ' ~  5 IO 15 20 25 30 35 
L /Ax 

- 
-- 

FIGURE 12.-Results of one dimensional test calculations with 
second and fourth order schemes. 

Figure 12 gives the results of one dimensional calcula- 
tions with the second and fourth order schemes for both 
the advection and conservation forms. Each solution is 
the result of 989 calculation cycles which corresponds to  
the curve being translated through a distance 1OL or 360 
zones. Curve B is the solution generated by a combination 
of equations (10) and (9), the quadratic advection 
scheme. Curve C is also a result of the advection pre- 
scription, being the fourth order solution, a combination 
of equations (11) and (9). Curve D is the solution of the 
second order conservation form (equation (17)) and curve 
E is the fourth order conservation form solution (eqiintion 
(18)). 

Figure 13 gives results of test calculations with some 
odd schemes. Curve B is the result of a two step, second 
order calculation (equation (13)) and curve C is the 
result of a fourth order two-step calculation siinilar Lo 
equation (13) but with the second. order spatial operators 
replaced by fourth order operators. Both of these curve& 
are plotted after 989 cycles so that the curve has moved 
a distance 1OL. Curve D is the result of a first order 
calculation in conservation form using the ideas con- 
tained in equation (12). I t  is the result of only 99 cycles 
so that this curve has only been transported u distance L. 
After 989 cycles, the strong damping in this scheme has 
reduced the result to +=-1.2 for all 2. 

Comparing curves B and C in figures 12 and 13 i t  is 
seen that the two-step calculations do result in slightly 
more accurate solutions, but that the accuracy is improved 
even more by switching from iidvection to conservation 
form, the most accurate result coming from the fourth 
order scheme in conservation form. 
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- INITIAL CONDITION 
-SECOND ORDER 

L / A x  

FIGURE 13.-Result of one dimensional test calculations with second 
and fourth order two-step schemes and a first order conservation 
scheme. 

(1 + r  is a scalar). 
The stability analysis of two dimensional schemes is 

made quite simple if the method of fractional time steps 
is adopted, for then the stability of the total step is 
guaranteed if each separate step is itself stable. Thirs 

scheme (advection form) gives results which differ very 
little from those obtained with (11). The abbreviated form 
is produced by dropping the last two terms in (11), the 
a3 and a4 terms. 

Y 

7. TWO DIMENSIONAL CALCULATIONS only the component one dimensional operators have to 
be examined for numerical stability, and since the two 
dimensional schemes considered in this report are co111- In  two dimensions, the color equation is 

-_ "-0 
dY 

and +(x, y, t )  is assumed to be known on a three dimen- 
sional space-time mesh where +?, l = + ( k A x ,  l a y ,  N A ~ )  for 
integral values of k ,  I ,  N .  

Difference equations in two dimensions are constructed 
following Marchuk's method of fractional time steps 
[5, 61, so that in operator notation, the advection form 
becomes, 

c~t'=[(I--A)(I--B)II.Nl,, 1 

where A+ and B+ represent advection in the x and y 
directions. In  practice, +"+l is the result of two distinct 
computations; first ++= (I-B)+", followed by + N + l  

=(I--)++. A and B are thus one dimensional operators 
and the two dimensional schemes (both advection and 
conservation forms) considered here are in fact composed 
of the one dimensional operators discussed in earlier 
sections of this report. 

The approximation to the conservation form is written 

~ ~ ~ l = [ ( l + ~ ) ( I - A ) ( I - B ) + N l ~ ,  z 

where A+ and B+ are proportional to fluxes in the x and y 

posed of one dimensional operators which have been 
analyzed in an earlier section, the two dimensional schemes 
may be considered to be stable, subject of course to the 
one dimensional stability requirements. 

The two dimensional test problem is the following. A 
square mesh is chosen with A x = A y =  I , and with 50 zoneb 
in each direction. In  all cases At is 0 .5 .  A velocity 
field corresponding to solid rotation is generated by 
?L= - (y-y0)/25 and v= (x-x0)/25, where zc nnd v are the 
Cartesian velocity components, the angular velocity of 
this flow field thus being 0.04 per unit time, and the flow 
field circling around the I'oint (xo, yo) =(25, 25). The 
dependent variable, 9, is set constant every\vhere except 
in :I region surrounding the point (25, 10) \\here it coni- 

poses a right circular cone with base radilis 5 and height 1 .  
Figure 14 is a. plot of initial conditiolis for the two 

dimensional tests. ?'he short line segments represetilj 
velocity vectors, giving the direction and (scaled) magni- 
tude of the (constant in time) velocity field. There is one 
velocity vector plotted in each zone. The circular patterii 
in the lower center is a plot of level lines of $(x, y).  Since 
the evaluation of + is governed only by advection, :md the 
specified velocity field corresponds to  solid rotation, the 
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FIGURE 16.-Second order solution at cycle 325. 

circular pattern should migrate in a circle of constant 
radius, in a counter-clockwise direction around the center 
of the mesh. 

Figures 15, 16, and 17 show the resulting $ field a t  
cycles 175, 325, and 475, respectively, when the differ- 
ence equation is the second order scheme described. 
These plots are essentially snapshots taken of contour 
lines of the $ field after it has been rotated by the velocity 
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FIGURE 17.-Second order solution at cycle 475. 

field approximately through a, 2a, and 3a radians, 
respectively. 

Figures 18 and 19 show the resulting $ field after 475 
and 950 cycles (rotations through 3a and 6a radians), 
respectively, when the difference equation is the foiirth 
order advection scheme. 

These plots are all unretouched CRT plots made with 
existing plotting routines (which use linear interpolation 
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FIGURE 19.-Fourth order solution at cycle 950. 

procedures) on the computer, during the execution of a REFERENCES 
problem. 

Both of these calculations were repeated using the 
appropriate equations in conservation form, but the 
results were not qualitatively different from results 
obtained from the advection forms. Since the two di- 
mensional test case involves nondivergent flow, this 
result is not too surprising. 

Test calculations have also been made in which the 
difference equation was not split into separate sweeps, 
corresponding to 

Jr+’= (I-A-B)Jr. 

These tests all showed serious distortions in the II. field 
after a rotation of approximately ir/2 radians. This in- 
stability was pointed out, for the quadratic advection 
scheme, by Leith [5]. 

It is apparent from these crude and qualitative results, 
that for problems in which advection is important, fourth 
order schemes offer quite an increase in accuracy over 
second order schemes. It should be pointed out, however, 
that in practice velocity fields are usually not constant 
in time, but rather are coupled in a nonlinear manner 
to the quantity being advected. The final evaluation of 
the usefulness of these higher order advection schemes 
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