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The Field Distributions and Balances 
in a Baroclinic Annulus Wave 
GARETH P. WILLIAMS-Geophysical Fluid Dynamics Laboratory,’ NOAA, Princeton, N.J. 

ABSTRACT-The detailed structure of a steady wave 
occurring in a rotating annulus of square cross-section and 
having a free surface is presented. The field distributions 
are obtained by numerical integration of the three- 
dimensional nonlinear Navier-Stokes equations. 

The distributions of pressure, temperature, and the three 
velocity components are displayed for the total fields and 
for the fields of deviation from the zonal means. Their 
dynamical balances are also discussed. The deviation wave 
is a type of Eady wave and the solution is used to discuss 

the structure of such waves in finite amplitude steady- 
state form under the influence of variations in baroclinicity, 
shear, and boundary layers. 

The side layers make little contribution to the char- 
acteristics of the wave in’ the deviation field although 
significant Ekman layer features do appear. The flow is 
essentially in hydrostatic and geostrophic balance except 
in the boundary layers. Heat conduction is important 
only in the side layers. 

1. INTRODUCTION 

The modern picture of the motions of the earth’s 
atmosphere began with the acquisition in the 1940s of 
details of the motions in the upper atmosphere. These 
and subsequent studies showed that large-scale eddies, 
cyclones, and anticyclones play an essential role in the 
maintenance of the global circulation against frictional 
dissipation. These eddies are associated with large-scale 
traveling waves in the westerly winds of midlatitudes. 
An understanding of the existence and character of waves 
with the same properties as those observed is a major 
problem in forming an understanding of the global 
circulation. 

The emergence of a consistent theory for the global 
circulation began primarily with the identification by 
Charney (1947) and Eady (1949) of the baroclinic insta- 
bility mechanism. This mechanism produced a wave mo- 
tion indicative of cyclone waves in the atmosphere. The 
theory of baroclinic instability is now central to our 
understanding of the dynamics of the atmosphere. 

The continuing development of the theory of baroclinic 
instability takes many forms. One of the most informative 
approaches has been the linearized perturbation method 
for small amplitude waves. This approach has mathemati- 
cal difficulties and was limited initially to an examination 
of waves with simple basic states. Since then, notable 
developments have included (1) Barcilon’s (1964) study 
of the effects of Ekman layers upon baroclinic waves, (2) 
Pedlosky’s (1964) use of the two level model to examine 
the effect of lateral shear, and (3) Mclntyre’s (1970) study 
of small lateral shear effects on the Eady problem. Most 
of these studies have been concerned with infinitesimal 
disturbances of the basic flow and are thus of limited ap- 
plication to global atmospheric dynamics. To extend the 
theory toward greater realism, one must examine baro- 
clinic waves as they develop into finite amplitude waves 
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and become affected by nonlinear processes. Pedlosky 
(1970) has begun studies in this direction for the two- 
layer model, but the remaining problems are formidable. 

Another approach toward the study of baroclinic waves 
developed after Hide (1953) showed that waves could be 
produced in the annulus convection experiments. The 
experiments showed that the flow types occurring in the 
system fell into four categories : axisymmetric, steady 
wave, vacillating wave, and irregular motions. Experi- 
mental determinations of the occurrence of the different 
flow regimes have been accumulated. 

The annulus waves were hypothesized by Lorenz (1956) 
to be baroclinic waves and subsequent theoretical studies 
to explain the complex regime diagrams (e.g. Lorenz 
1962, 1963, Barcilon 1964) were based on this hypothesis. 
These analyses have made an important contribution by 
their classification of various types of baroclinic waves. 
The experimental difficulties of measuring the internal 
details of these waves have never been really overcome. 
Thus experimental and theoretical interaction has been 
limited to explaining flow regime transitions, and the ex- 
periments have given little information as regards the 
detailed structure of waves. 

The present stage of development of baroclinic insta- 
bility theory requires that me obtain an understanding of 
the character of waves under more general basic states, of 
finite-amplitude waves, and of time-dependent waves. 
This understanding is necessary if the theory is to develop 
toward greater applicability to the atmosphere. 

The purpose of this paper is to present details of a 
steady annulus wave as obtained by numerical integration 
of the three-dimensional NavierStokes equations. We 
study annulus waves because these waves are finite- 
amplitude baroclinic waves and are formed under condi- 
tions of general shear and baroclinicity. Thus, they can 
provide the details of the character of those waves being 
sought theoretically and may thus aid in the development 
and confirmation of such theories. Numerical integration 
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is necessary to provide the details of the waves because 
of the difficulties in observing the pressure and velocity 
fields. It is also hoped that presentation of flow details mill 
help in the development of observational methods as well 
as in providing an example for theoretical analysis. 

The numerical solution does confirm the validity of 
Lorenz' hypothesis as to the nature of the waves (Williams 
1971). We will also see i;hat the annulus deviatoric wave 
fields are reasonably free of the influence of those complex 
features peculiar to the annulus system such as the side 
boundary layers.2 Because of this, the experiments provide 
relevant data for baroclinic instability theory. 

2. THE PREDICTION EQUATIONS 
AND PARAMETER VALUES 

We will consider the motion of a fluid bounded by two 
coaxial cylinders of inner and outer radii, a and b, re- 
spectively, and two parallel horizontal planes which are a 
distance, d,  apart (fig. 1A). The container rotates a t  a 
uniform rate, a, where the rotation vector, antiparallel 
to gravity, g, coincides with the vertical axis of the 
cylinders. Motion relative to the solid rotation of the con- 
tainer is measured in cylindrical coordinates, r ,  +, and z ,  
with r being the radial axis and z the vertical axis. The 
velocity components are u, v, and w in the zonal, radial, 
and vertical directions, respectively. The angular size of 
the annulus sector, @, is normally 2?r but for the calcula- 
tions we consider only the sector @=2?r/5 (fig. lB),  for 
reasons discussed in Williams (1971). 

The following definition of a Boussinesq liquid is taken 
for convenience: a liquid in which density variations are 
negligible except in the buoyancy term and in which the 
coefficients, V, K ,  and P,  of viscosity, heat diffusivity, and 
thermal expansion, respectively, are constant. We also 
take the centrifugal acceleration to be negligible compared 
with gravity; that is, Q2b/g<<1. As a' consequence, the 
upper surface can be taken to be of constant height and 
the free-slip rigid lid condition can be used for this surface. 

The perfectly conducting inner and outer cylinders are 
held at  different constant temperatures, T,, and To, 
respectively. This imposed horizontal temperature dif- 
ferential, AT= Tb- Tal drives the fluid away from a state 
of solid rotation. The base and upper surface are thermally 
insulating. 

Upon writing the hydrostatic pressure deviation as 
"=PIPo and the temperature deviation from T, as T,  the 
Navier-Stokes equations for this system may be expressed 
in the following form: 

' 
1 Deviatoric is defined as the deviation from the zonal mean. 

Id 
A '  

B 
FIGURE 1.-(A) configuration of the system and (B) pressure wave 

at the upper surface. The container rotates counterclockwise at 
Q= 0.8 rad/s and the wave rotates counterclockwise relative to the 
container a t  Q*=0.033 rad/s. Domain of interest is & = O o - 7 2 O .  
The pressure is normalized in terms of the maximum and minimum 
values, which are 1.8319 and 0.6974 cm2.s-2. 

with the heat transfer equation as 

DT -=Kv'T, Dt (4) 

and the equation of mass conservation as 

where we have defined the operator identities 

The boundary conditions as used in the calculations 
and which express the state of the fluid a t  the boundaries 
are : 

W=V=U= T,=O , p ,  = Pg T+ vw,, (8 )  

on the base, 
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on the free surface, 

on the side walls, and T=O, A T ,  applied at  r=a,b, 
respectively. We assume periodicity in @. 

The finite-diff erence procedure for solving the system 
of eq (1)-(10) is given in Williams (1969). The parameter 
values used in the calculation to  give a steady wave are 
listed below. 

1. Geometry 

a=2 cm, b = 5  cm, d=3 cm. 

2. Physical Properties (water a t  20’ C) 

~=1.008XlO-~ cmz/s, ~=1.420X10-~ cm2/s, 
/3=2.054X (‘c)-’. 

3. Resolution 

Ar‘ = 1/32, Ad= 1/32, A+‘= 1/36. 

4. Nondimensional Numbers 

Thermal Rossby number r4 = @gATd/Q2 (b -a)2= 0.525, 
Taylor number r5=4flz (b-~)~/v*d=2.041 X lo6, and 
coordinates r ‘ = (r - a ) / @  -a) , z ’ =z/d, 4’ = +/(a. 

Reasons for this choice of parameters are given in Williams 
(1971). 

The transition curve between axisymmetric and wave 
flow as estimated from observational data is shown in 
figure 2. The letter H denotes the solution point. Starting 
from an initial state in which the fluid is in solid rotation 
and is a t  a uniform temperature, T=AT/2, the equations 
are integrated until a quasi-steady wave motion is 
achieved. The fully developed wave reaches equilibrium 
and rotates uniformly relative to the container a t  a rate 
of Q*=0.033 radis. For convenience, the solution is’taken 
when the trough of the surface pressure wave is in the 
+’=0 position (fig. 1B). The accuracy aspects of the 
solution are discussed in the appendix. 

f 

3. THE TOTAL FIELDS 

The total pressure, temperature, and component wind 
fields are presented in this section. These fields could be 
observed experimentally and for this reason presentation 
in this form is desirable. In  discussing the solution, it is 
useful to look at the variables in terms of the zonal mean, 
(-), and deviations therefrom ( )’. The term “devi- 
atoric” is used for the zonal deviation rather than “eddy” 
because the flow is laminar and has a finite amplitude. 
This procedure is justified a posteriori by the nature of 
the solution but need not necessarily be a meaningful 
procedure for any three-dimensional flow. The character 
of the zonal mean fields is given in Williams (1971) and is 
not discussed further in this paper. 

=4 

\ \ 
10-31 . . . . . . . I  . . . . . . . I  . . . . .  I . . -- 

io5 10 10 10 * lo9 

=5 

FIGURE 2 .-Transition curve between axisymmetric motion (left) 
and wave motion constructed from data of Fowlis and Hide 
(1965) for the parameters of the calculation. Coordinates are the 
thermal Rossby (rJ) and Taylor (r5) numbers. Circled values are 
from the summary curves of Fowlis and Hide interpreted for our 
parameter values. Cross marks indicate transition points for 
observations with small fluid depth ( 5  cm), and square marks are 
likewise for small inner radius. Associated wave numbers are 
given as a guide. The diagonal line AT=5’C is the locus of 
interest. The solution is obtained at H(n=0 .8 ) .  

The three-dimensional fields are displayed by means of 
two-dimensional cross-sections. It is convenient to map 
some of the distributions onto a uniform rectangular 
area based on the mean length scale of the + coordinate. 
Thus, the geometrical distortion should be borne in mind 
(cf. figs. IB, 3E). 

Total Pressure 

The pressure wave travels from left to  right with the 
isobars acting as streamlines in the horizontal cross- 
sections of figure 3. The lom-pressure center on the base 
at +’=fi is associated with the free-surface trough at 
+’=O; this is the characteristic fi wavelength slope of a 
baroclinic pressure wave with height. Positive (westerly) 
zonal flow exists in the upper regions (figs. 3C-3E) whereas 
negative (easterly) zonal flow occurs in the Ekman layer 
(fig. 3A). Near the critical level, the flow forms closed 
circulations (fig. 3B). There are radial variations in the 
pressure field, but these are more obvious in the deviatoric 
pressure and will be discussed later. 

Tota I Temperature 

The thermal boundary layers that form along the lower 
part of the hot outer mall (fig. 4A) and along t,he upper 
part of the cold inner wall (fig. 4E) are essentially inde- 
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FIGURE 3.-Horizontal sections of total pressure, n (units: 10-1 
cmZ.s-*), a t  heights of (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E) 63/64. Solution is mapped onto a rectangular area. The 
length of the +' abscissa is such that  i t  corresponds to the value 
at r '=1/2 relative to the radial coordinate length. In  each dia- 
gram, the cold inner wall is the top boundary. The wave moves 
from left to right. 
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FIGURE 4.-Horizontal sections of normalized temperature, (!/'/AT) 

X 10, a t  heights (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, and 
(E) 63/64. 

r' 
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& 
FIGURE 5.-Horizontal sections of vertical velocity, 'ui (units: 10-2 

cm/s), a t  heights of z'= (A) 2/64, (B) 18/64, (C) 34/64, (D) 50/64, 
and (E) 62/64. Reduced' contour intervals are used in diagrams 
(A) and (E). 

pendent of 4'. The variation of the temperature, like 
pressure, is smooth and wavelike. 

Total Vertical Velocity 

Separate boundary layer and interior flow regimes exist 
for the vertical velocity (fig. 5). I n  the interior region, the 
flow is predominantly upward as the flow moves inward 
(4'=0-0.5) and downward as the flow moves outward, a t  
all heights. Along the side boundaries, there is almost 
pure boundary layer flow as indicated by the axisymmetry 
of the isolines. However, some interaction occurs between 
the interior wave regime and the boundary layer as can be 
seen in figure 5D where at  the cold wall the downflow due 
to the wave enhances the boundary layer downflow to 
produce an area of maximum downflow of 0.14 cm/s near 
+'=0.75. The jet leaves the inner wall a t  this point. 

Total Radial Velocity 

The radial velocity contours that we see in figure 6 
are produced mainly by the wave motion, as there is 
only a weak radial velocity associated with the mean 
fields (see Williams [1971, fig. 4b(i)]). The regions of 
inflow (v < 0) and outflow (v > 0) slope backward with 
height. A geostrophic relation to  the isobars (fig. 3) is also 
apparent . 
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FIGURE 6.-Horizontal sections of radial velocity, u (units: I O 4  

cm/s), a t  heights of z’= (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E) 63/64. A smaller contour interval is used in diagrams (A), 
(B), and (0. 

FIGURE 8.-Horizontal sections of zonal velocity, u (units: 10-2 
cm/s), at heights of z’= (A) 1/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E) 63/64. 
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FIGURE 7.-Vertical sections of zonal velocity, u (units: 1 0 - 2  cm/s), 

along the wave at &’=(A) 0, (B) 10/72, (C) 18/72, (D) 28/72, 
(E) 36/72, (F) 46/72, ( G )  54/72, (H) 60/72, and (I) 64/72 (i.e., 
0-1.0 in intervals of approximately 1/8). 

. .  Total Zonal Velocity 

The zonal velocity pattern varies considerably along the 
wave, and it is of interest to examine vertical cross-sections 
(fig. 7) as well as the horizontal ones (fig. 8). In  the trough 
region (fig. 7A), the jet is nearest the outer wall, its axis 
is vertical, and the jet magnitude weakest a t  0.32 cm/s. 
With increasing C$‘, the jet moves to the inner wall and its 
axis takes on a diagonal slope. The jet attains a maximum 
value of 0.52 cm/s a t  the ridge, C$’=0.5, and a strong 
momentum boundary layer forms along part of the top 
wall (see also fig. 8E). A very small isolated region of 
negative zonal flow occurs a t  the upper surface, on the 
cold wall near c$’=% (fig. 8E). It is linked to larger 
regions of negative flow at  lower depths (fig. 7A). 

4.  THE DEVIATORIC FIELDS 

The deviatoric fields define and reveal the nature of the 
wave flow more incisively than any other set of variables. 
Thus, this section will be concerned with discussing the 
phase and amplitude behavior of the deviatoric fields. 
This behavior can be represented to a good approxima- 
mation by two-dimensional quasi-phase, quasi-amplitude 
diagrams. These may be obtained from the coefficients of 
the first mode of a Fourier analysis in the 4‘ direction 
and such diagrams are given in Williams (1971, figs. 
11 and 12). 
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#‘ 
FIGURE 9.-Horizontal sections of deviatoric pressure, ?Y’ (units: 

10-2 cmz.s-2), a t  heights of z’=(A) 1/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. A smaller contour interval is used in 
diagrams (A)-(C). 

However, we would like in this section to present the 
nonapproximated form of the deviatoric wave behavior 
and thence to provide a realization of the complex phase 
behavior of this quasi-Eady, finite amplitude, steady-state 
wave with its underlying variable shear, baroclinicity, 
and boundary layer effects. The nonapproximated form 
also reveals the extent of nonlinear and higher mode 
effects not exhibited by the approximated forms. 

Deviatoric Pressure 

The deviatoric pressure has a very smooth wavelike 
behavior (fig. 9). The phase variation can be realized 
from the zero-value contours with the radial phase 
variations given by figure 9 and the vertical variations by 
figure 10. The amplitude behavior is straightforward with 
largest amplitudes being confined to the central (~ ’=0 .5 )  
zone. Low pressure regions have larger amplitudes than the 
high pressure regions. As regards the interior region of the 
fluid, the characteristic 34 wavelength back-slope with 
height is well established. In  the upper one-third of the 
interior region, the phase varies weakly with height 
(figs. lOC-lOE). The more significant variation occurs in 
the radial direction with the wave in the middle zone 
leading those in adjacent regions in the upper half of 
the fluid [cf. fig. 12, Williams (1971)l. This wave shape 
is characteristic of angular momentum transfer into the 
middle zone. 

0 E 1 

@‘ 
FIGURE 10.-Azimuthal sections of deviatoric pressure, T’ (units: 

cm2.s-2), at radii of T ’ =  (A) 3/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. A smaller contour interval is used in 
diagrams (A) and (E). 

As regards boundary regions, there is a more markedly 
variable phase behavior than in the interior. Strong 
radial variations in phase occur near the free surface 
region of the inner wall where the wave appears to  be 
rapidly retarded (fig. 9E). I n  the vertical direction, 
however, the pressure wave on the inner wall has its 
phase lines leaning backward with height (fig. 10A). The 
situation is different near the outer wall where the phase 
variability is mostly a function of height, the phase 
becoming rapidly horizontal at z’=0.4 and sloping 
forward with height in the lower region (fig. 10E). This 
indicates the presence of higher wave numbers. 

The physical explanation of the phase behavior is 
unknown and, because of the weak amplitudes near the 
the sides, the meaningfulness of local phase changes is not 
established. However, recent studies by Saltzman seem 
to indicate that such features as phase layering are an 
inherent property of generalized baroclinic ~ a v e s . ~  The 
whole phase behavior is summarized by the quasi-phase 
diagrams of Williams [1971, fig. 12(a)]. 

Deviatoric Temperature 

The deviatoric temperature field possesses a certain 
degree of detail and asymmetry particularly in the 
sidewall regions (figs. 11 and 12). Although the side 

3 Seminar at the Geophysical Fluid Dynamics Laboratory, N O A A ,  November 1971 
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FIGURE 11.-Horizontal sections of deviatoric temperature, 

(T'/AT) X lo2, at heights of z'=(A) 1/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. 

regions display large phase variability, the associated 
amplitudes are small. This indicates that thermal bound- 
ary layers play only a secondary role in the formation of 
the deviatoric wave. 

I n  the interior region the phase leans forward with 
height, a characteristic of the baroclinic wave. The 
maximum amplitude occurs a t  midheight. 

A region of enhanced cooling occurs near the inner 
wall near +'=K (fig. 12A) and is correlated with the 
maximum downflow region. 

Deviatoric Vertical Velocity 

The deviatoric vertical motion is closely related to the 
deviatoric temperature field with upward motion coin- 
ciding with positive temperature anomalies. This produces 
the vital release of potential energy. Thus, the patterns 
of figures 13 and 14 closely resemble the temperature 
patterns (figs. 11, 12). The amplitude asymmetries of the 
vertical velocity occur predominantly in the inner side- 
wall region. The maximum upward velocity occurs just 
ahead of the low pressure area on the base as in atmos- 
pheric cyclone systems. 

In  both the T' and w' fields, it is clear that the wave 
patterns, although less well ordered, are divided into 
2 regimes-the interior and sidelayer systems. Whereas 
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FIGURE 12.-Aeimuthal sections of deviatoric temperature, (T'IAT) X loz, for (A)-(C), the inner boundary region r'= 1/64, 5164, and 
9/04; (D)-(F), the interior region r'= 17/64, 33/'64, and 49/64; and (G)-(I), the outer boundary region r'=55/64, 59/64, and 63/64. 
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#’ 
FIGURE 13.-Horizontal sections of deviatoric vertical velocity, 
w’ (units: 10-2 cm/s), at heights of z’=(A) 2/64, (B) 18/64, 

. (C) 34/64, (D) 50/64, and (E) 62/64. A smaller contour interval 
is used in diagrams (A) and (E). 

the wave is different in the boundary layers, the main 
interior wave retains its own character and is not funda- 
mentally affected by the localized boundary influences. 

At the base there seems to be an almost separate wave 
system (of weak amplitude) occurring in both sidewall 
regions (fig. 13A). This produces strong phase changes in 
those regions. This phenomenon may represent a con- 
servation requirement. 

Deviatoric Radial Velocity 
The horizontal sections for v’ (fig. 15) are similar to  

those for total v (fig. 6) except in the Ekman layer. This 
reflects the fact that ij is relatively small except near the 
base. The patterns form a well structured wave similar 
to the deviatoric pressure pattern (fig. 9) but being 
approximately yZ wavelength out of phase in the interior 
regions. This indicates geostrophy. The shape of the 
velocity wave is somewhat different, however, particularly 
in the side regions. 

Although the v’ wave generally leans backward with 
height, this variation is modified by the Ekman layers 
which cause a retardation of the wave in the outer region 
(fig. 16E) and an advancement in the inner region (fig. 
16A). 

Deviatoric Zonal Velocity 
The phase-amplitude behavior of u’ is more difficult to 

FIGURE 14.-Azimuthal sections of deviatoric vertical velocity, w’ (units: cm/s), for (A)-(C), the inner boundary region r’= 1/64, 5/64, 
and 9/64; (D)-(F), the interior region T’=  17/64, 33/64, and 49/64; and (G)-(I), the outer boundary region r‘= 55/64, 59/64, and 63/64. 
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FIGURE 15.-Horizontal sections of deviatoric radial velocity, v’ 

cm/s), at heights of z’= (A) 1/64, (B) 17/64, (C) 33/64, 
FIGURE 17.-Horizontal sections of deviatoric zonal velocity, u’ 

(units: 10-2 cm/s), at heights of z’= (A) 1/64, (B) 17/64, (C) 33/64, 
(D) 49/64, and (E) 63/64. A smaller contodr interval is used in 
diagrams (A)-(C). 

(units: 
(D) 47/64, and (E) 63/64. 

determine than that of other variables because the 
amplitude vanishes in a transltion from positive to nega- 
tive values near r’=O.4, allowing higher modes to enter 
in the interior (fig. 17). Apart from this transition zone, 
the u’ pattern is dominated by the first mode. The variable 
also leans backward with height, indicating a degree of 
geostrophy in its production (fig. 18). 

The maximum amplitude occurs in the free surface 
jet near the inner wall where momentum boundary layers 
form along the upper one-fourth of the wall (fig. 17E). 

5. THE DYNAMICAL BALANCES 

To determine how the above wave is produced and 
maintained dynamically, me conclude with a discussion of 

0 D 

\ \ I  some representative diagrams of the component terms of 
C 

h 

z.’ 

d’ 

the basic prediction and vertical vorticity equations. The 
behavior of the terms at  z’=O.5 is reasonably representa- 
tive of the dominant interior and side region balances but 
further frictional forces enter in the Ekman layer to modify 
these balances. 

The Vertical Velocity Components 

The variation of the components of eq (3) at  z’=O.5 
and +’=O (fig. 19) indicates that the fluid is in a hydro- 
static balance in the interior. The deviation from hydro- 
static balance is greater in the side boundary layers than 

FIGURE 16.-Azimuthal sections of deviatoric radial velocity, v’ 
cm/s), at radii of r’= (A) 4/64, (B) 18/64, ( C )  34/64, 

interval is used in 
(units: 
(D) 50/64, and (E) 60/64. A smaller 
diagrams (A) and (E). 
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@' 
FIGURE 18.-Azimuthal sections of deviatoric zonal velocity, u' 

(units: 10-2 cm/s), a t  r'= (A) 3/64, (B) 17/64, (C) 33/64, (D) 49/64, 
and (E) 61/64. 

this ,figure suggests because both layers are relatively 
weak at  zf=0.5 .  Since the balance varies so slowly with 
+', one diagram is sufficient to  show the overall balance 

The Zonal Velocity Components 

The representative components of eq (2) for the zonal 
velocity reveal a predominant balance between the 
Coriolis term and the pressure gradient a t  all $f  values 
(fig. 20). The u field forms a stronger side boundary layer 
a t  z'=0.75 than at  this height so the friction term is 
under-represented. The remaining terms of the equation 
are smaller but not negligible and mill be examined again 
in the vorticity equation. 

The Radial Velocity Components 

The components of eq (1) shown in figure 21 also display 
a predominant balance between the Coriolis term and the 
pressure gradient a t  all 4f .  The balances of the u and v 
equations together form a geostrophic balance so that the 
isobars can be regarded as streamlines for horizontal flow. 

The Vertical Vorticity Components 

The dominance of the geostrophic balance in the u and v 
equations obscures the balance between the other terms 
in the two equations. To circumvent this, the equation for 

0 
r' 

FIQURE 19.-Radial distribution of components of the w equation a t  
midheight (z'=33/64) for +'= -1/72. Terms are (a) SgT, (b) 
VV%, and (c) -rZ. Other terms are negligible. Units are 
cm. s2. 
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F I G U R E  ZO.-Radial distribution of components of the u equation a t  
midheight (z'=33/64) for +'= (A) 0, (B) 18/72, (C) 36/72, and (D) 
54/72. Terms are (a) -ut, (b) - ( ~ ~ , + U U & + W U , ) ,  ( c )  - (2Q 
+u/r)u, (d) -T&, and (e) V V ~ U .  Units are cm s - ~ .  Coordinates 
are all as in (C). 

vertical vorticity is formed: 

-tr+vlr+: lQ+w-tz= ( 2 ~ + l ) ~ . z + t w r + V  ?trv2p (11) 

where 
W 

Uz, q=Vz-Wr, 
1 VQ l=- (Tu),---, t=d-  r 
r r 

are the (2 ,  T ,  4) vorticity components, respectively. 
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FIGURE 21.-Radial distribution of components of the v equation a t  
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vorticity (I= (TU) J r  - v&) equation at midheight ( z '=  33/64) for 
+'=(A) 0, (B) 18/72, (C) 36/72, and (D) 54/72. The terms are 
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The representative components (fig. 22), do not indicate 
any predominant balance. An important feature of the 
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FIGURE 23.-Example of the vertical vorticity field, I (units: 10-1 

s-l), in three sections: (A) azimuthal section at r'=34/64, (B) 
vertical section at +'=O, and (C) horizontal section at z'= 33/64. 
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balance is the strong viscous term. This is to  be expected 
for we know that in the balances for axisymmetric flow 
(Williams 1967) the viscous term is large in the balance of 
the u equation, and f is essentially the gradient of u. 

Three sections of the vertical vorticity { itself are given 
in figure 23. Positive spin occurs mainly in the trough 

452-659 0-72-0 
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( + ' = O )  and negative spin mainly near the ridge (+'=0.5). 
The positive values have the larger amplitude. 

The Temperature Components 

The components of eq (4), the temperature equation, 
are presented in figure 24. I n  addition to the three basic 
terms of the equation, the three component terms of con- 
vection are also given separately because each term is im- 
portant in itself in this predominantly convective flow. 

Conduction is negligible in the interior where the balance 
is between the time term -TT, and the convection term 
V*VT. I n  the side boundary layers, the conduction term 
becomes large whereas the terms - T ,  and uT,/r become 
secondary; this reflects the axisymmetry of the thermal 
boundary layers. Thus the thermal layer on the inner wall 
is mainly formed by a balance between the vertical con- 
vection term -wT, bringing warm fluid down the wall and 
the terms -UT,, KV'T removing heat out of the region at  
z '=O.5 .  The balance of the thermal boundary layers is 
essentially the same as that of comparable axisymmetric 
solutions. 

6. CONCLUDING REMARKS 

Detailed characteristics of a steady annulus wave have 
been presented. The solution provides an indication of 
the form of steady, finite amplitude, baroclinic waves of 
the Eady type under the influence of lateral shear and 
baroclinicity variations and viscosity. A major aspect of 
the deviatoric fields is the smallness of side boundary 
layer features which shows that the interior wave is only 
slightly modified by the side regions. Although the 
deviatoric wave is essentially a quasi-Eady wave, it does 
possess some peculiarities of its own as regards phase 
behavior in boundary regions. This phase behavior still 
lacks a physical explanation. The phenomenon of phase 
layering near boundaries could be of consequence in 
determining the influence of midlatitude disturbances 
upon tropical ones in the earth's atmosphere. 

The dynamical balances of the interior region are 
essentially hydrostatic and geostrophic. These conditions 
are in agreement with the usual assumptions made in 
theoretical studies. 

Although the deviatoric wave possesses a certain 
amount of complexity which makes i t  difficult to define, 
it is still possible to define i t  by means of the quasi-phase, 
amplitude diagrams given in Williams (1971). A com- 
parison of these diagrams with the field distributions of 
this paper indicates that this is an accurate procedure. 
Having been able to "define" the steady wave in this way, 
me must next consider whether a similar technique will 
allow us to define the vacillating wave. Clearly, these 
waves need to be defined, but until a better theoretical 
basis is established, it will be difficult to provide a thorough 
analysis of either steady or vacillating waves. The same 
numerical techniques are appropriate for obtaining the 
details of vacillating waves, but the problem of defining 
and analyzing the wave is more difficult. It may be 

-6 -4 -2 0 I 

RADIAL VELOCITY ZONAL VELOCITY 

FIGURE 25.-Comparison of (a) an analytical solution and (b) 
numerical values of the axisymmetric solution at r'= 1/2 for the 
Ekman layer on the base. Abscissa scale cm/s and ordinate K 
indicates the grid points of thc numerical scheme that start  
at one-half grid interval above the base. (A) zonal velocity and 
(B) radial velocity. 

possible to extend the quasi-phase, amplitude diagrams 
into three-dimensional diagrams by using time as one of 
the axes. 

It is hoped that presentation of field distributions will 
assist also in the development of observational techniques 
as has been the case with axisymmetric studies. We have 
presented a solution at  one parameter point only and there 
remains a need to determine the structure of the flow over 
the whole regime for wide parameter ranges. Observational 
studies would be most suitable for this purpose. 

APPEN DI X : ACC U RACY LI MI TAT1 ON S 
OF THE NUMERICAL SOLUTION 

Although the accuracy of the solution presented in this 
paper cannot be directly evaluated, y e  can perform anal- 
yses that suggest that good accuracy has been achieved. 
For instance, the axisymmetric solution at  the same param- 
eter values may be obtained at  the same resolution as 
the wave solution and at  higher resolution. This was done 
and the solutions were found to be very accurate; that is, 
integral quantities differed by less than 5 percent. Two 
further tests will be discussed in this section. 

Ekman Layer Analysis 

The most convincing test of a numerical solution that 
can be made is a comparison with analytical solutions. 
This is clearly impossible for the complicated wave 
solution. However, in the axisymmetric solution a t  point 
H {see Williams [1971, fig. 4(a)]}, the boundary layer 
on the base is close to being an Ekman layer a t  r'=0.5 
where minimum sidewall and buoyancy effects occur 
(i.e., w=O). 

The equations governing the flows at  that point are to a 
good approximation 

-2Qu= -7r,+vv,,, 2 m =  +vu,,. (12) 

The boundary conditions are that u=v=O at  z=O and 
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that v+O,u+G for large 2. An analytical solution exists 
for this problem provided that G is linear in z or 
constant. As G increases with z {Williams [1971, fig. 
4(a)]), we assume G to be linear in the region just above 
the Ekman layer. The solution is then 

u=G(z) ( l -ee-Y  cos y ) ,  v=-G(z)e-Y sin y (13)  

where y=z(Q/v)’/’ and G(z )  =u1z+u2. The constants ul, uz 
are obtained by matching G(z )  with the numerical values 
of u at  the grid points K=4 and 7 (fig. 25)-one point 
being just inside the layer and one just outside the layer. 

The analytical solution (based on two match points) 
and the numerical solution at  r ‘zO.5  are shown in figure 
25. The Ekman layer extends up to K = 5  to 6 which is 
consistent with the simple Ekman layer depth formula 
6=?r(~/8)‘/~=0.35 cm which is close to K = 5 .  The two 
solutions are close despite the approximation, and it is 
clear that the numerical solution has adequate resolution 
for accurate representation of the Ekman boundary layer. 

The accuracy condition RA<< 1 is met by the steady 
wave solution. Although the above criterion is somewhat 
arbitrary, it does give an idea of the order of magnitude 
of the resolution. More importantly, the analysis suggests 
that resolution varies as Re’/’ for a fixed accuracy which 
is more favorable than varying as Re. 
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