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ABSTRACT-The baroclinic instability problem is formu- 
lated as an initial value problem to evaluate the effects 
of the initial configuration of the wave perturbation. The 
vertical shape of the initial perturbation is found to be as 
important as its wavelength in determining the energy 
conversions during the early stages of its development. 

The general character of the solution of the initial value 
problem is compared with normal mode studies of baro- 
clinic instability. It is concluded that the initial value for- 
mulation bridges the gap between hydrodynamic stability 
theory and synoptic studies of cyclone development in the 
atmosphere. 

1. INTRODUCTION 

Theoretical studies of cyclone development in the 
atmosphere generally approach the problem from the 
viewpoint of the instability of wavelike perturbations 
imbedded in a zonal current. The mathematical pro- 
cedure follows the classical normal mode approach to the 
stability of hydrodynamic flow that dates back to investiga- 
tions by Thomson, Rayleigh, and Helmholtz, at the end 
of the last century. The primary goal of such studies is 
to establish a criterion for &stability by finding the 
conditions under which small periodic disturbances in 
the fluid display an exponential increase of amplitude 
with time. Although atmospheric stability studies posed 
in this fashion undoubtedly provide valuable information 
concerning the basic mechanisms of cyclone development 
in the atmosphere, it would seem that this approach 
tends to  highlight one aspect of the problem at the 
expense of others. It is the purpose of this note to  illustrate 
that, from a meteorological viewpoint, significant in- 
formation may be gained by posing the atmospheric 
instability study as an initial value problem. 

The theory of atmospheric development aims at in- 
creasing our understanding of the formation and evolution 
of cyclone perturbations in the atmosphere. Instability 
studies point at  the general shearing properties of the 
baroclinic westerlies as the most likely cause of the 
growth of small disturbances into mature storms. Actual 
computations indicate that any zonal current derived 
from atmospheric data is unstable for a range of cyclone- 
scale waves, even if this zonal current is computed from 
climatological mean maps (see, e.g., Simons 1970). Since 
the major instabilities are found to be of the baroclinic type, 
we have here an explanation for the role that cyclones 
are observed to play in the cycle of energy conversion in 
the atmosphere, at  least from a statistical viewpoint. On 
the other hand, if we look at  cyclone development from 
a more synoptic viewpoint, the question arises as to what 
causes a particular atmospheric disturbance to develop 
into a mature cyclone. The answer that the zonal flow is 
unstable with respect to perturbations of this scale may 
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not satisfy us since the atmosphere at  any given time 
displays an abundance of large-scale eddies, many of 
which do not develop in spite of satisfying the same 
criterion. Although we cannot overlook such factors as 
thermal processes, effects of the earth's topography, and 
nonlinear interactions, it is shown here that the initial 
structure or configuration of an observable atmospheric 
perturbation is a primary agent in determining the 
short-term development of this disturbance. In  other 
words, the initial value aspect of the atmospheric insta- 
bility problem may be as important as the normal mode 
aspect if we want to bridge the gap between stability 
theory and the theory of cyclone development in the 
atmosphere. 

In general, stability questions can be investigated 
without formulating the initial value problem, but it is 
often useful, if not mandatory, to have the latter well in 
mind. Case (1962) points out that the initial value ap- 
proach can clarify certain ambiguities that may occur in 
normal mode solutions of classical hydrodynamic stability 
problems. With regard to the atmospheric instability 
question, we may refer to the recent interest in nonlinear 
studies on this subject. The initial value problem is an 
essential ingredient of such nonlinear studies, and it is 
by no means a straightforward matter in view of the 
multiple unstable modes and the time scales involved. 
Obviously, proper treatment of the nonlinear problem 
and interpretation of the results require a knowledge of 
the linear stability properties of the atmosphere on the 
same time scales. Thus, if the study is concerned with 
the instantaneous increase of perturbation kinetic energy 
as derived, for instance, from conversion of potential to 
kinetic energy, it should be realized that a distinction 
between unstable and neutral perturbations may be 
irrelevant. 

2. ATMOSPHERIC MODEL 

Most studies concerned with the dynamic instability 
of the atmosphere have followed the guidelines set by 
Charney (1947) and Eady (1949) who presented the 
first mathematical treatment of cyclone waves in terms 
of a continuous baroclinic atmosphere. For comparing 
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the initial value approach with the normal mode approach 
to atmospheric instability, it is advisable to  keep the 
model relatively simple. The present study is concerned 
with the baroclinic model of the atmosphere as formulated 
essentially by Charney ( 1947). Thus, the results obtained 
here are either explicitly or implicitly present in previous 
papers on atmospheric instability, but the interpretation 
is directed toward a better understanding of the relation- 
ship between the mathematical aspect of the stability 
problem and the physical problem at hand. 

The time-scale of the problem justifies the use of an 
adiabatic, frictionless model. Considering a quasi-static, 
quasi-geostrophic atmosphere and using the beta-plane 
approximation, we obtain the following system of 
equations: 

and 
(-&+v.v) a a+ F+-  w = o  

P .fo 

where+is the stream function, w=dp/dt is a measure of 
the vertical velocity, p is pressure, 1 is time, and V= k X v #  
where k is the vertical unit vector. The Coriolis parameter, 
jo, and its derivative, @o=dj/dy, are treated as constants. 
The static stability, U= - (ale) aO/ap where (Y is specific 
volume and e is potential temperature, is considered a 
function of pressure only to  preserve the energy consist- 
ency of the system. The boundary conditions for this 
system of equations are 

w=O for p=O and p=po=lOOO mb. (3) 

Since the flow field must be periodic in the longitudinal 
direction, we may write 

+(S,Y,P,t) =?(y,p,t> ++'(X,Y,P,t) 
and 

4z,Y,P,t) =&Ap,t> +o'(z,y,p,t) 

where the bar denotes a zonal average and 

(4) 

the prime 

of the wave of wave number k as long as eq (5) is satisfied. 
Thus, independently of the magnitude of the perturba- 
tion, the initial development of the wave of wave number 
k can be computed from the following equations: 

(g+ikZ) (k2e-$)+ik (po-$) *+f0 s=O an (6) 

and 

- a  
u=-FG' 

In general, these equations do not completely describe 
the system since the square of the initial perturbation will 
contribute toward a change of the zonal flow and will also 
generate a wave of twice the original wave number. 
Thereafter, the number of possible interactions increases 
continuously and a complete spectrum of waves is gener- 
ated that implies that eq (6) and (7) will also involve 
products of perturbations. The most familiar effect of the 
nonlinear processes is a damping of exponentially growing 
disturbances as compared to results of linear theory. Thus, 
if the perturbation grows, the shear of the zonal wind 
decreases, which in turn reduces the growth of the per- 
turbation. A rather complete treatment of the nonlinear 
system is presented elsewhere (Simons 1970). The present 
study, however, is confined to the purely baroclinic system 
arrived at  by ignoring the y-dependence of the zonal wind 
and the initial perturbation. I n  that case, the nonlinear 
contributions from the initial perturbation disappear and 
eq (6) and (7) completely describe the system. The same 
still holds if the initial perturbation is periodic in y. 

The system of eq (6) and (7) may be written in terms 
of the stream function by eliminating the vertical velocity. 
Specified for the baroclinic problem, the equation becomes 

- 

denotes the deviation from this average, which is not 
necessarily small. Further, the deviation may be repre- 
sented by a 
are functions of y, p, and t. Assuming that initially the 
perturbation on the zonal flow consists of one single wave 
of given zonal wavelength, we may write 

where * is now a function Of and ' are 
functions of p only. The boundary conditions follow from 
eq (3) and (7); that is, 

and p, and 
series, the coefficients of 

+'(z,y,p,t) = *(y,p,t)efn"+ ***(Y,P,t)e-fkz Equations (8) and (9) specify the initial value problem to 
and (5)  be discussed in the present paper. 

~'(2, y,p,t) =O(y,p,t)cfnz+n*(y,p,t)e-fnz 

3. METHOD OF SOLUTION 
Analytical solutions of somewhat simpler but verS 

similar initial value problems have been presented by 
Case (1960) and Pedlosky (1964). In general, it will be 
necessary to employ numerical techniques in the space 

where k is the wave number and the asterisk denotes the 
complex conjugate, such that +' and w' are real functions. 

After substitution of eq (4) into eq (1) and (2), the 
equations will involve products of the perturbations that 
cannot, however, contribute to the time rate of change 
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domain and, in the case of nonlinear equations, also in the 
time domain. With regard to  the former, it  is most com- 
mon to replace the space-derivatives by finite differences. 
Alternatively, one may apply the spectral technique 
whereby the dependent variables are represented by series 
of orthogonal functions with time-dependent coefficients. 
I n  either case, the governing equations will be reduced to 
a large set of ordinary differential equations in the time 
domain. A comparison of these techniques in the present 
case does not suggest that the spectral solutions are su- 
perior and, therefore, we restrict this discussion to  the 
rather more convenient finite-difference methods. 

To apply this technique to eq (8), we divide the interval 
0 2 p  2 p o  into N layers of depth Ap=po/N each. Equation 
( 8 )  is applied at  the centers of these layers, the vertical 
derivatives are replaced by the usual centered differences, 
and the boundary conditions given in eq (9) are in- 
corporated into the equations for the lower and upper 
layer. The result is a system of N equations for the 
variables !P,(t) =*(t,p,) where pn=po- (n- x) Ap and n 
ranges from 1 to N. The new variables are only time de- 
pendent, and the system can be written in matrix nota- 
tion as follows: 

B -=- a' ikAP 
dt 

where P is the vector consisting of elements *,, and A and 
B are square matrices of order N. The matrix elements are 
real and they are, in the present system, determined 
completely by the basic state parameters and the wave 
number of the disturbance. Inverting the matrix B, we 
obtain 

-=_ ikB-lAP. 
dt 

In  the case of the general nonlinear problem, it would 
be necessary at  this point to  introduce a finite-difference 
approximation in the time domain since the matrix A 
would be time-dependent. The truncation error associated 
with such time extrapolations can be avoided here since 
the present linear system allows for an exact solution. 
The solutions to eq (11) are of the form exp(-ikct), and 
we see from eq (5) that c represents the phase speed of 
the perturbation; and if c=c+ic,, then kc, is its growth 
rate. By substituting the exponential solutions into eq 
(1 l ) ,  we obtain the eigenvalue problem 

(B-'A-cI)P=O (12) 

where c is the eigenvalue and I is the unit matrix. Thus, 
in the first instance, the baroclinic initial value problem 
becomes an eigenvalue problem. The latter problem, 
however, represents only the first step of the initial value 
solution. Once the eigenvalues have been obtained, the 
eigenvectors have to  be determined. The complete solution 
is 

P(t) =DE(t) (13) 

where D is the square matrix made up of the eigenvectors 
and E ( t )  is the vector consisting of the elements e,( t )=d,  
exp(-ikct), n=1, 2, . . . , N .  The N constants, d,, 
finally are to  be determined from the initial values of the 
perturbation in the N gridpoints. These constants follow 
immediately from eq (13) after inversion of the matrix 
D and evaluation of P and E at the initial time. 

The outline of the solution of the baroclinic initial 
value problem has been presented here in some detail to 
contrast it with the conventional normal mode solution of 
the baroclinic stability problem. Thus, the usual method 
of determining the stability of perturbations as described 
by eq (8) and (9) is the following. Since the coefficients 
of eq (8) are independent of time, a solution, Q-exp(-ikct) 
can be assumed, and unstable solutions are obtained 
for complex values of the wave speed c. Actually, in that 
case, a growing and a decaying mode will exist 
simultaneously since complex phase speeds can be found 
only as complex conjugate pairs. Introducing the exponen- 
tial solution into eq (8) and (9), we obtain 

. I  

with boundary conditions 

This is the baroclinic eigenvalue problem. 

Consider now the eigenvalue problem [eq (12)] cor- 
responding to the baroclinic initial value problem as 
approximated by a multilayered model. The eigenvalues 
are determined by the condition that the solution be 
nontrivial; that is, the determinant I B-'A - c I I = 0. The 
eigenvalues are, therefore, simply the roots of the matrix 
B-lA. Now, since the matrices are of order N ,  there 
will be N eigenvalues. Most of these eigenvalues are real 
and do not correspond to the normal mode solutions of 
the continuous eq (8). These real roots can be explained 
by noting that eq (12) would also be obtained if the space- 
derivatives in eq (14) were approximated by finite 
differences. The latter differential equation is singular, 
however, and a continuous spectrum of real eigenvalues 
is possible such that c=U at any point in the vertical. 
The spectrum of real eigenvalues of eq (12) apparently 
corresponds to the continuous spectrum of eq (14). While 
the continuous spectrum may be just a nuisance in the 
normal mode problem, it is seen from eq (13) to be an 
essential aspect of the initial value problem where it 
becomes necessary to determine the coefficients d, from 
the initial values. In  other words, the continuous spectrum 
is required to represent an arbitrary initial perturbation. 
A discussion of the general character of the eigenvectors 
corresponding to the eigenvalue problem [eq (12)] may 
be found in the next section. 

Before proceeding to the solutions of the baroclinic 
initial value problem, we should investigate the trunca- 
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tion error in the space domain resulting from the replace- 
ment of eq (8) by (11). For that purpose, eq (8) and (9) 
may be solved exactly for the time-derivative of the 
perturbation in terms of the perturbation at  a given time, 
and the solution may be compared with the values 
obtained from eq (11). For a given profile of the zonal 
wind, the stability, and the perturbation, eq (8) becomes 
a nonhomogeneous ordinary differential equation with 
pressure as the independent variable and the perturbation 
tendency as the dependent variable. The equation can be 
easily solved if the inverse static stability is represented 
by a linear function of pressure, which is a reasonable 
assumption as we will see in the next section. Now let the 
perturbation at  a given time, together with the zonal wind, 
be represented by a power series in pressure. It follows 
then from eq (8) that the perturbation tendency will be 
made up of another power series plus the solution of the 
homogeneous equation. The homogeneous equation may 
be reduced to Bessel’s equation, and the appropriate 
solution is Bessel’s function of the first kind of order zero 
with the argument proportional to the square root of 
pressure. Solutions have been obtained for a synoptic 
scale wave and reasonable profiles of zonal wind and 
perturbations, Comparison of these solutions with solu- 
tions computed from eq (11) indicate that the error is of 
the order of one percent for a 20-layer model. This error 
must be expected to  increase if the perturbation varies 
irregularly with height such as is observed for short and 
long waves. Similar calculations have been made by 
Wiin-Nielsen (1962) to estimate the truncation error of 
prediction models with low vertical resolution. Recently, 
this method of solution was used by Sanders (1971) to 
determine the initial displacement and intensification of 
an idealized cyclone disturbance. 

Another approach to estimating the truncation error 
of finite-difference solutions consists of an evaluation of 
the convergence of the solutions as a function of the 
resolution. This procedure is usually followed in numerical 
instability studies to determine the accuracy of the 
eigenvalues corresponding to the unstable modes. We 
will return to this in the subsequent presentation of the 
results of the computations. It is, however, useful to 
mention a t  this point that a convergence of the normal 
mode solutions does not necessarily imply a convergence 
of the numerical solution of the initial value problem. 
Actual computations show that the contributions from 
the quasi-continuous spectrum in the layered models 
do not converge at  the same rate as the unstable modes 
(Simons 1969). However, this is of interest only for 
long- term integrations in the absence of unstable modes. 
The present investigation is concerned with short-term 
integrations for which the convergence of the numerical 
solution is found to be satisfactory. 

4. RESULTS OF NUMERICAL INTEGRATIONS 

To put the initial value computations in perspective, 
we consider first some prominent results of barcolinic 
instability studies based on eq (14) and (15). This system 
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FIGURE I.-Basic state zonal flow and inverse static stability. 
Profiles shown by solid lines were used in all calculations unless 
stated otherwise. 

of equations has been solved numerically for the profiles 
of zonal wind and static stability shown in figure 1. The 
inverse static stability shown is obtained by averaging 
the values for summer and winter presented by Gates 
(1961). The zonal wind is a wind profile for middle 
latitudes obtained from climatological-mean January data. 
The dashed lines are linear approximations that have 
been used in certain calculations carried out for com- 
parison, but the profiles shown by the solid lines have 
been used in all subsequent computations unless stated 
otherwise. The real and imaginary parts of the wave 
speeds of the unstable synoptic scale waves for this basic 
state are presented in figure 2. The imaginary parts have 
been multiplied by the wave number to obtain the growth 
rate, kc,. Results are shown for numerical models with 
both low and high vertical resolution. The two-layer 
model shows the familiar shortwave cutoff to instability, 
which is markedly reduced in the three-layer model and 
tends to disappear for high vertical resolution. Weak 
instabilities are also found for long waves in models of 
sufficiently high resolution. 

The vertical structure of the unstable modes is shown 
in figure 3A for wavelengths of 2000, 4000, and 6000 km. 
The relative amplitudes are, of course, arbitrary. The 
shorter disturbances are shallow waves without variations 
of phase with height. The longer waves develop in the 
upper atmosphere and tilt westward. The weakly unstable 
long waves consist of a lower level wave and an upper 

A 



WAVELENGTH ( 1000 km) 

FIGURE 2.-Wave speeds and growth rates of unstable waves as a 
function of wavelength and vertical resolution of the numerical 
model. 

level wave that are effectively uncoupled and are 180' 
out of phase. Figure 3A includes also the structure of 
the 4000-km wave for the linear zonal wind represented 
by the dashed line in figure 1. Whereas the zonal wind 
now increases with height in the stratosphere, the per- 
turbation still decreases. This may be attributed to  the 
correct representation of the static stability. The variation 
of inverse static stability shown in figure 1 together with 
the governing eq (8) indicate that the stratospheric 
motion must be nearly horizontal and nondivergent. 
This would suggest that the upper boundary condition 
may be applied at a lower level. The curve denoted by 
4b in figure 3A represents the 4000-km disturbance if 
the static stability parameter assumes an infinitely large 
value above the 125-mb level as shown by the dashed 
stability curve of figure I. 

The general character of the continuous spectrum 
eigenvectors corresponding to the eigenvalue problem 
[eq (12)] is illustrated in figure 3B. Here we have chosen 
the model with linear profiles of zonal wind and inverse 
static stability where the singularity c = u  occurs at only 
one level for a given root and the roots are equally spaced. 
The arrows in the figure indicate the location of the 
singularity where the eigenvector shows a discontinuous 
f i s t  derivative as expected from eq (14). The numerical 
model consists of 20 layers in the vertical, but the upper 
three layers are uncoupled (l/a=O) which results in a 
total of 17 eigenvectors instead of 20. Fifteen of these 
eigenvectors correspond to real eigenvalues; the other 
two vectors are associated with the pair of complex 
conjugate roots. The amplitude profile of the latter has 
been included in figure 3B (see also figure 3A). 

AMPLITUDE 

c.6.00 0.15 9.44 

L 

TROUGH POSITION 

10.73 12.00 13.23 14.44 15.64 

k36i 

L 

FIGURE 3.-(A) structure of unstable mode for wavelengths of 2000, 
4000, and 6000 km (denoted by 2,4,  and 6, respectively). Curve 4a 
is for the dashed wind profile and 4b for the dashed static stability 
profile shown in figure 1. (B) eigenvectors for quasi-continuous 
spectrum and amplitude of normal mode eigenvector. Basic state 
parameters given by dashed lines of figure 1, wavelength L is 
4000 km. Truncation of numerical model is at N=20, but upper 
three layers are uncoupled (l/o= 0 ) ,  resulting in 17 eigenvectors. 

The preceding review of the normal mode instabilities 
is restricted to  those results which may serve as a back- 
ground for the subsequent discussion. Far more elaborate 
computations have been presented in the meteorological 
literature. We will not attempt to  include a complete 
listing of pertinent references here, but we should mention 
the recent papers by Hirota (1968) and Brown (1969) on 
numerical studies of the atmospheric stability problem. 

Returning now to the initial value problem, we must 
interpret the results above with reference to the time scales 
of atmospheric cyclones. Clearly, then, the emphasis is on 
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FI GURE 4.-Growth rate of unstable mode and actual growth of 

lower layer perturbation in a two-layer model. Values of zonal 
wind were taken from dashed curve of figure 1. Growth rate is 
measured by kci and actual growth by d m o  where K is the 
perturbation kinetic energy. 

the development of a perturbation during a relatively 
short time period, rather than the asymptotically different 
behavior of neutral and unstable waves. Figure 4 illus- 
trates how the time scale enters into the instability prob- 
lem. The lower part of figure 4 shows the normal mode 
instability in a two-layer model for the zonal wind shear 
corresponding to the dashed line of figure 1 .  The actual 
growth of any perturbation introduced in the lower layer 
can be read from the upper part of figure 4. Here the 
perturbation is measured by the square root of the verti- 
cally averaged kinetic energy of the wave. The pronounced 
distinction between neutral and unstable waves is not 
visible in the upper figure, quite similar to results obtained 
from nonlinear computations. The growth of the waves for 
real values of the wave speeds occurs because any pertur- 
bation is made up of more than one normal mode. The 
growth rates of the individual modes are equal to zero, 
but the different phase speeds cause the amplitude 
variations of the sum of the modes. 

It may be of interest to recall here that unstable waves 
with large growth rates may actually lose kinetic energy 
if their initial vertical configuration is not favorable for 
development. A typical example is the case of the short 
waves in a model of high vertical resolution. The growth 
rates of these waves are sufficiently large as shown by 
figure 2. Nevertheless, the waves will not develop for a 
period of many days if the initial perturbations extend 

FIGURE 5.-Amplitudes of perturbations after 1, 2, and 3 days as a 
function of the initial vertical configuration (denoted by 0). From 
top to bottom the wavelengths are L=2000 km, L=4000 km, and 
L=6000 km. 

through the whole depth of the atmosphere. This was also 
indicated by Wiin-Nielsen’s (1962) calculations of initial 
energy tendencies for a vertically continuous model. 

It should be stressed that the preceding does not con- 
tradict the general information obtained from the normal 
mode studies. Thus, it is seen from figure 4 that these 
studies give an excellent indication of the most unstable 
waves, even for the time periods considered here. However, 
since any nonlinear study is essentially an initial value 
problem with finite initial perturbations, a meaningful 
evaluation of nonlinear effects can be made only if the 
inherent properties of the linear initial value problem are 
borne in mind. 

The vertical shape of the initial perturbation was briefly 
mentioned. This is the most interesting aspect of the 
initial value formulation of the stability problem. The 
normal mode instabilities are determined completely by 
the basic state parameters together with the horizontal 
scale of the perturbation. The following discussion shows 
that the initial configuration of the perturbation is just as 
important, if not more important, in a complete study of 
cyclone development. 
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FIGURE 6.-Growth of wave perturbations after 3 days as a function 
of wavelength and initial perturbation level. Depths of initial 
perturbations are 300 mb as in figure 5. Growth is measured by 
4 Ks/  KO where K ,  is the perturbation kinetic energy after n days. 

Figure 5 shows the growth of a wave disturbance in the 
atmosphere as a function of the level where the perturba- 
tion is introduced. The initial perturbations shown here 
are rather shallow, but similar patterns of development 
were obtained for deeper perturbations. Also included is a 
perturbation extending initially through the whole depth 
of the atmosphere. All computations employed the basic 
state parameters shown by the solid lines in figure 1 .  
Comparing figure 5 with the structure of the unstable 
mode shown in figure 3, we see that the quasi-continuous 
spectrum of neutral modes determines the shape of the 
perturbations for our time scales to a large extent. 

The results of similar calculations for various wave- 
lengths have been combined into figure 6 where the 
growth of a perturbation after 3 days is shown as a func- 
tion of the wavelength and the level at  which the per- 
turbation is introduced. The initial shape of the 
perturbations is as shown in figure 5, and the growth is 
measured again by the square root of the kinetic energy 
of the perturbation. It is noteworthy that a wave per- 
turbation at  the jet stream level does not amplify, but a 
disturbance introduced a t  midlevels feeds immediately 
into the jet stream as seen from figure 5. It may also be 
noted that the short waves and the low-level disturbances 
develop strongly at  the surface and therefore will be more 
sensitive to frictional effects. For that reason, one must 
expect the maximum in figure 6 to move upward and to 
the right for the actual atmosphere. 

The vertical amplitude variation is only one aspect of 
the initial configuration of the disturbance, and one would 
expect its vertical tilt to be just as important. No attempt 
has been made to solve this complex problem except for 
the simple case of a two-parameter or two-layer model. 
For such models, exact solutions can be obtained for the 
amplitude ratio and the phase difference between the 
iriitial upper and lower waves that are most favorable 
for subsequent generation of perturbation kinetic energy. 
It is found (Simons 1970) that the energy conversion 
reaches a maximum if the amplitude of the initial lower 
level wave exceeds that of the upper level wave and if 
the upper wave is initially behind by a phase lag greater 
than 7r/2. This may be contrasted with the well-known 
solution for the structure of the unstable normal mode 
for such models where the upper wave perturbation is 
larger than the lower one and stays behind by less than 
s/2. 

In the present context, we can also consider the recent 
work by Sanders (1971), who computed the instantaneous 
three-dimensional field of geopotential tendency for a 
model cyclone perturbation. In  the notation of the present 
paper, Sanders’ initial wave disturbance is of the form 

$’(z,Y,P)=$~ COS k ( z + l )  +$T Z(P> COS kx 

where is the amplitude of the surface stream function 
perturbation, $T is the wave amplitude of the “thermal 
wind” stream function, and 1 is the phase lag of the surface 
disturbance relative to the temperature wave. The pressure 
function Z(p)  describes the vertical structure of the 
geopotential field corresponding to a logarithmic vertical 
variation of the temperature field. The same function 
specifies the vertical profile of the zonal wind similar to 
that of the concepts of the two-parameter models. For 
this model, the maximum deepening of the storm center 
is found to occur if 1 equals one-quarter of a wavelength. 

5. CONCLUSIONS 

It is concluded that the atmospheric instability problem 
formulated as an initial value problem has many interest- 
ing aspects that have been only partly explored in the 
past. Since the nonlinear stability study is an initial 
value problem, the linear stability problem must be 
approached in the same manner to allow an evaluation 
of the nonlinear effects. The most interesting aspect of 
the baroclinic initial value problem is the initial configura- 
tion of the perturbation. The vertical shape- of the initial 
perturbation has been found to be as important as its 
wavelength in determining its growth over a time period 
that is consistent with the time scale of meteorological 
development. 
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