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ABSTRACT-The turbulent energy equation, together 
with a modified mixing length, is adopted to close the 
governing equations in the turbulent planetary boundary 
layer under stratification conditions. The system of 
governing equations is decoupled by introducing a strati- 
fication parameter, Q. Numerical integration of the 
system, in general, is outlined and should be easily imple- 
mented. Results for the momentum fluxes, eddy viscosity, 
geostrophic drag coefficient, and the angle between the 
geostrophic wind and the surface shear stress, which are 

obtained from the decoupled system with Q as a parameter, 
are presented for Q ranging from -100 to 100. They 
are compared, when possible, with the measurements. 
The effects of both the thermal and humidity stratification 
are indexed by Q. The model shows that, in the presence 
of evaporation or humidity stratification, the geostrophic 
drag coefficient may differ greatly from the case of thermal 
Stratification only. The planetary boundary thickness and 
other main features of the turbulence depend on Q. 

1. INTRODUCTION 
The dependence of the geostrophic drag coefficient on 

the surface Rossby number and other turbulent charac- 
teristics in the planetary boundary layer under neutral 
conditions has been studied by several authors (e.g., 
Lettau 1959, Blackadar 1962, Blackadar and Tennekes 
1968, Deardorfl 1970). The effects of thermal stratification 
were subsequently introduced (e.g. , Bobyleva et al. 1967, 
Yamamoto et al. 1968, Pandolfo 1969). In  addition to the 
thermal stratification, it is intended in this paper to take 
the specific humidity into consideration. The present 
solution will furnish an auxiliary solution when the inter- 
action between the atmosphere and water bodies is 
encountered. 

A steady, horizontal, uniform case for an incompressible 
fluid is studied, in which the turbulent exchange is con- 
sidered only in the vertical direction. This will provide the 
initial condition for a later investigation of the unsteady 
case. The governing equations of motion, energy, and 
water vapor with the semiempirical K-theory for the 
quantities of fluctuation correlations are (e.g., Laikhtman 
1964) 

and 

- d ( K  g)-j(u-u,)=O, 
dz 

where u and v are the z and y components of the mean 
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velocity, K is the eddy viscosity, u, and v, are the x and 
y components of the geostrophic wind, p is the density of 
the air, c, is the specific heat at  constant pressure, 0 is the 
mean potential temperature, p is the mean specific 
humidity, f is the Coriolis parameter, ab and a, are ratios 
of eddy conductivity and eddy diffusivity to the eddy 
viscosity, respectively, and R is the sum of net radiation 
flux over all wavelengths. M is the vapor flux due to 
mechanisms other than the turbulent fluctuation. 

Integrating eq (3a) and (4a) yields 

and 

where 22, E, Bo, and go are integration constants repre- 
senting the heat flux, evaporation, potential temperature, 
and specific humidity at the surface, respectively. These 
four constants will be determined from the boundary 
conditions imposed on 0 and p. 

A fifth equation is needed to close the system [eq (1)- 
(4)J for five dependent variables u, v, 8, p, and K. Yama- 
mot0 et al. (1968) assumed that 

where k is the von Karman constant, u* is the frictional 
velocity, and 4 is a dimensionless wind shear function 
obtained with the assumption of constant shear stress and 
heat flux (Yamamoto 1959). This is inconsistent with the 
boundary layer. DeardorfF (1971) used a subgrid-scale eddy 
coefficient to obtain K i n  the process of numerical solution. 
Pandolfo (1969) used different semiempirical formulas for 
K under different stability conditions. This approach 
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seems sound but fails to give a unified formulation for K. 
Furthermore, the stability condition cannot be chosen as a 
priori but should emerge as a result of the solution in the 
case of unsteady flow. Therefore, in the processes of finding 
a numerical solution with an iterative technique, one has 
to check the stability conditions and insert the correct K 
for each step; this greatly complicates the calculation. 
Hence, a more theoretically oriented turbulent energy 
equation, which will yield a unified formulation for K, is 
highly desirable. 

Bobyleva et al. (1967) used the turbulent energy equa- 
tion aided by von Earman's similarity hypothesis to 
determine the mixing length. Brutsaert and Yeh (1973) 
also applied that equation but with linearly varying mix- 
ing length to the surface layer. Thus, in the present model- 
ing, this concept will be employed to  close the system [eq 
(1)-(4)]; that is, 

I 

where y is an empirical constant, and To is a reference 
temperature. The central problem lies in the determina- 
tion of the mixing length, 1. The von Earman theory is not 
valid throughout most of the planetary boundary (Black- 
adar 1962). Observations showed (Mildner 1932) that the 
mixing length could not continue to be proportional to 
the distance from the ground outside the surface layer. 
Therefore, 1 will be modified according to Blackadar (1962) 
such that 

where h is an empirical constant. 

, 
2. BOUNDARY CONDITIONS 
AND METHODS OF SOLUTION 

The boundary conditions for the system [eq (1)-(4) and 
eq (6) and ('i)] are obtained from the following physical 
considerations : 

1. At  infinity, the mean velocity approaches the geostrophic 
wind. 

2. A t  the surface, the shear stress approaches a constant surface 
stress, TO. 

3. The x coordinate will be set to coincide with the direction of 
shear stress a t  the surface. 

4. At infinity, the mean potential temperature and mean specific 
humidity approach their free atmosphere values. 

5. At the surface, the specific humidity is saturated and hence a 
unique function of the temperature. 

6. At the surface, the net energy flux equals zero. In other words, 
the net solar plus the net atmospheric radiation fluxes are used 
up by sensible heat transfer from the surface into the atmosphere 
and into the water body, by evaporation, and by the long-wave 
back radiation from the surface into the atmosphere. 

and 
du dv K -=ug and K - =O dz dz a t  z=za (9) 

where zo is the roughness length of the surface and 
u*=&& is the frictional velocity at  the surface. From 
items (4), (5) ,  and (e) ,  one has 

at  z = m ,  (10) (H-R) dz 

at z = a ,  (11) (E-M) dz 

a t  z=zo R",d:+C,pahK z+LptZx de dP --s=o 
dz 

J (124 
Or 

R:- ere,'- H- L E- S = 0 at z=zo, (12b) 
and 

Po = Ps (eo) at z=zo. (13) 

Here, R, is the net long-wave and short-wave radiation 
at  the surface from the sun and the atmosphere, S is the 
energy lost to the water body, ps is the saturated specific 
humidity (which is a unique function of Bo,) pg and 8, are 
the values of p and 0 in the free atmosphere, respectively, 
L is the latent heat for the water vapor, e is the emissivity 
of the surface, and Q is the Stefan-Boltzmann constant. 

The system [eq (1)-(4) and eq (6) and (7) subject to 
conditions (8)-(13)] will be solved numerically. It is 
usually more convenient to write the equations ir? dimen- 
sionless form, thus reducing the number of parameters 
involved. For this purpose, a velocity scale and a length 
scale are needed. I t  has been shown (Blackadar and 
Tennekes 1968, Bobyleva 1967) that u, and u , ~  will be 
appropriate for such purpose. Hence, defining the charac- 
teristic quantities 

and 

and 

and 
u3-P E -  *- O .  6 1 k2gy 

and introducing the dimensionless variables 

ku u+=-, 
U* 

From items (I), (2) , and (3) , one has and 

u=ug and v=vg at  z= (8) 
kv v+=- 
u* 
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and 
K 

ku,h' 
K= - 

ke e --' +-T* 
and 

where h=ku,/f is about the order of the planetary 
boundary layer thithess, we can reduce eq (1)-(4) and 
eq (6)-(13) to the following: 

$ ( K  $f)+V+--u+ k V g = o ,  

$ ( K  $)-U++Ug=o,  

K 4 = k 4 [ ( K  %>Z+(K $>Z-Q] ,  
and 

Here 

and 

where 

R,+ -&$+ - H+ - b E+ -S+ = 0 a t  {=O, 

and 

qo+=gs(Bo+) at r=O. 

520-242 0 - 1 3  - 2 

H+=H/H*, E+=E/E*, R+=R/H*, M+=MIE*, and 

k2gy (H - R)  0.61 k27~,To( E- M )  '= - { u: f pc,To + u:.fPcpTo 
=H+-R++E+-M+ (27a) 

is a function of r because R and M depend on the height 
from the surface. In the present study, R will be assumed 
compensated for by M so that Q is a constant; that is, 

I n  eq (27b), Le is the Monin-Obukhov length divided by 
y (Yamamoto 1959). 

Equations (15)-(18) with boundary conditions (19) and 
(20) can be decoupled from eq (21) and (22) with boundary 
conditions (23)-(26) if Q in eq (17) is considered as a 
known parameter. Therefore, for given external param- 
eters,f, G, e,, qg, R,, S, zo, and p, and constants c,, k, a,, 
a,, E ,  u, and L, the solutions of the systems [eq (15)-(26)] 
will consist of the following procedures: 

1. Assume Q in eq (17) is known. 
2. Solve the decoupled eq (15)-(18) with boundary 

conditions given in eq (19) and (20) to obtain K ,  ut, and 
v+. At  this stage, the characteristic quantities, H*, E*, q*, 
and T* can be calculated with the aid of eq (48). 

3. With K obtained in step 2, solve for eo+, go+, H+, and E+ 
from eq (23)-(26). 

4. Substitute H+ and E+ obtained from step 3 into the 
right side of eq (27). H- the resulting value equals the 
assumed Q in step 1, then proceed to step 5 .  Otherwise, 
repeat steps 1-4 until a correct Q is obtained. 

5.  With eo+, qo+, H+, and E+ obtained from steps 1-4, 
the profiles of the potential temperature and specific 
humidity are then given by eq (21) and (22). Thus, it is 
seen that the solution of the present problem hinges on 
the solution of the decoupled system given by eq (15)-(20) 
with Q as a parameter. Hence, attention will be given to  
the solutions of this decoupled system with Q as a free 
parameter in the remainder of this paper. 

Let 

and 

Differentiating eq (15) and (16) with respect to r and 
making use of eq (28), one obtains the following from 
eq (15)-(19): 
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FIQURE 1.-The variation of the geostrophic drag coefficient, 
Ca, versus the Rossby number, R,, for &= - 100, 0, and 100. 

and 
4=1 and $=0 at  r = O .  (33) 

Boundary conditions given in eq (20) require a little 
further examination. Equations (15) and (16) relate the 
balance of three kinds of forces; namely, the frictional force 
(the f i s t  term), the Coriolis force (the second term), and 
the pressure force (the third term). I n  the meantime, 
eq (20) says that, a t  l= 0 3 ,  the Coriolis force equals the 
pressure force so that the frictional force is zero; that is, 

4=0 and $=0 at  l= Q). (34) 

A n  expanding grid is used in the planetary boundary in 
which each grid length is 1.25 times the size of the one 
below it, thus providing greater resolution in the lower 
layers (Luther 1970). The minimum grid size is 
This is equivalent to  about 1 cm in the physical plane if 
u*=25 cm/s. The expanding scheme presents a problem 
when it comes to writing differential equations in finite- 
difference form. The usual method of expressing deriva- 
tives as the difference between values of a variable at 
certain gridpoints results in expressions that are not 
centered on gridpoints when an expanding grid is used. 
Most finite-difference methods are not applicable to ex- 
panding grids without sacrificing accuracy. To get around 
this problem, we introduce the transformation 

{(i) = 4 X 1 O-'[ (1.25) '- 11 (35) 

where i is an integer ranging from 1 to m . For an evenly 
spaced grid in i, there corresponds an expanding grid in 
I;  as desired. Now, to express the derivatives in finite- 

0 

1 oo I I  I I 1 1  I I  I 
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Log(G/fzo) 
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Q -  0 

Q P  -lW 
0 

FIQURE 2.-The variation of the angle, a, between the geostrophic 
wind and the surface shear stress for &= -100, 0, and 100. 

difference form in i space, we consider i as a continuous 
variable temporarily; then, for any function F, 

dF dFd i  
dp=di 2. 

Solving i from eq (35), one obtains 

In (1.25) 2= (37) 

Taking the derivative of eq (37) with respect to 5 and 
substituting eq (35) into the result, one has 

(38) 
di 1 
G=4X10-5 In (1.2E1)(1.25)~' 

Approximating the derivative of F by 

dF AF 
d i  A i  
-=- 

and substituting eq (38) and (39) into eq (36), we get 

(39) 

(40) 
F(i+l)-F(i) 

($3i+1,2=4X10-5 In (1.25)(1.25)f+'/2' 

The second derivative evaluated at the ith gridpoint 
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FIQURE 3.-The vertical profile for the x component shear stress, 
a, for (A) &=-loo, 0, and 100 with ro=O, and (B) co=O, 10-4, 
and 10-3 with Q = O .  

is approximated by 

( d 2 )  d i  d ( d F )  
d12 ,=%di 8 

Substituting for the first derivatives in eq (41), one has 

F(i+l)--2.25F(i)+l.25F(i-l) ($)i= (4X 10-5)2(ln 1.25)2(1.25)2t+1/2 * 
(42) 

Using eq (42) for the second derivatives in eq (29) and 
(30), we obtain a system of nonlinear equations for eq (29)- 
(34). The Gauss-Seidel successive iterative method (e.g., 
Conte 1965) is applied to solve the systems of equations. 
The computer program was written in such a manner that 
Q need not be a constant but a reasonably behaved 
function of l. 

The solutions of the system given by eq (29)-(34), 

1 00 
B 

10' 

-2 
10 

o - ~  
0 I O4 102 10 

5 

FIQURE 4.-The vertical profile for the y component shear stress, *, for (A) &=-loo, 0, and 100 with co=O and (B) 50=0, 10-4, 
and 10-3 with Q=O.  

depending on a roughness parameter lo and a stratifi- 
cation parameter Q,  will be denoted by the functions 

4 = w ;  5-0, Q ) ,  (43) 

$=W; To, Q ) ,  
and 

The velocity profiles and other characteristic quantities 
can then be expressed in terms of these universal functions. 
From eq (15) and (16), one obtains for the velocity profiles, 

The geostrophic coefficient, defined as Cd=u,/G, is 
calculated from eq (15), (16), and (19); it is 
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where G is the speed of the geostrophic wind, and the 
tangent of the angle, a, between the geostrophic wind and 
the shear stress at  the surface is 

3. RESULTS AND DISCUSSION 

The variations of c d  and CY with the Rossby number, 
R,= G/(jzo), are shown in figures 1 and 2. Various sources 
of measurements (e.g., Blackadar 1962) are reproduced 
here for comparison. The scatter of the data may be partly 
due to the range of atmospheric stratification. For example, 
the Brookhaven data for Cd are in good agreement with 
the present modeling with &= - 100. It is thus worthwhile 
to note that a good estimation of Cd and CY is conditioned on 
good knowledge of the stratification conditions. When 
the atmosphere is thermally slightly stable; that is, when 
H has a small negatise value, the presence of the evapo- 
ration, E, will cause 0 in eq (27) to become negative (i.e., 
an unstable atmosphere prevails instead). In such case, 
c d  and a will have a great difference from the one without 
evaporation. This situation must be handled very 
carefully. 

Figure 3 shows vertical profiles of the dimensionless 
2 component shear stress, 9. Figure 3A illustrates its 
variation with the stratification parameter, &. Note that 
@ approaches zero when l is about 0.45 under neutral 
conditions. This means that the geostrophic wind velocity 
is reached approximately at z=O.l8%H. Deardorff (1972) 
obtained a value of 0.2u*/j. It is also seen that the greater 
the instability, the higher the level that the geostrophic 
wind velocity can reach and vice versa under stable con- 
ditions. On the other hand, Deardorff (1972) has shown 
that 9 approaches zero at 2=z1 (zi is the height of the 
inversion base) regardless of the instability. This should 
imply and allow us to make a conclusion that zlf/u* is a 
function of & determined from figure 3. Figure 3B shows 
that the surface roughness has practically no effect on 9. 

The vertical profile of y component shear stress, Q, is 
shown in figure 4. All the curves increase nearly linearly 
for some distance from the surface and then drop sharply 
to zero. This indicates that the free atmosphere is attained 
quickly in the upper part of the planetary boundary layer. 
Figure 4A shows that the greater the instability, the higher 
the maximum point can reach. Figure 4B shows that the 
effect of the roughness parameter, lo, is limited only to a 
very small fraction of the boundary layer. Clarke’s (1970) 
measurements for the shear stress components, @and*, are 
also plotted in figures 4A and 3A for the purpose of com- 
parison. They show the validity of the present analysis. 

The vertical distribution of the eddy diffusivity, K, is 
shown in figure 5. Note that K tends to be constant under 
unstable conditions. This is easily seen from eq (31), 

which is in agreement fomularily with Kazansky and 
Monin (1958) for the surface layer under free convection. 
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FIGURE 5.-The vertical profile for the eddy viscosity, K ,  for 
(A) &=-loo, 0, and 100 with l o = O  and (B) l o = O ,  lo-‘, and 

with &=O.  

If the mixing length varies linearly with z,  which is the 
case for the subsurface layer, the turbulent diffusivity, K, 
varies with z4/3 as can be seen from eq (50). However, since 
the former tends to constant as z approaches infinity 
[eq(32)], so does K other than increasing with z4I3 as in the 
study of subsurface layers (Kazansky and Monin 1958). 
On the other hand, K approaches zero under neutral and 
stable conditions due to the damping effect of the thermal 
stratification and evaporation. Figure 5A shows that K 
increases nearly linearly up to {=0.025 under neutral 
conditions.. This is equivalent to z=O.Olu*/f, which was 
the value Blackadar and Tennekes (1968) obtained. Figure 
5B shows that the effect of roughness on K is again limited 
to the surface layer. 

4. CONCLUSION AND REMARK 

The fields of the velocity, eddy viscosity, potential 
temperature, and specific humidity in the planetary 
boundary layer are decoupled by introducing a free 
parameter, Q,  which combines the effects of the thermal 



and humidity stratification. Solutions of the whole system 
can be done by the method of trial and error on Q. The 
decoupled system for the velocity field and eddy viscosity 
with Q as parameter is solved numerically. Results show 
good agreement when both the thermal and humidity 
stratification are taken into consideration. 

I n  practical applications, eg and pg are usually unknown. 
On the other hand, the equivalent blackbody temperature 
of the water surface can be found easily using a thermal 
radiometer or thermal scanner h the 10-to 12-pm window. 
Due to the high emissivity of the water surface in this 
region (Wolfe 1965), the kinetic temperature, Bo, may be 
assumed to be equal to the equivalent blackbody tempera- 
ture in the topmost 10 pm of the water surface; po may 
then be estimated by assuming that the air in contact 
with the water surface is saturated. Under this circum- 
stance, with Bo and po given, one should be able to  solve 
for eg and pg in addition to the heat flux, H,  and evapora- 
tion rate, E,  by using eq (23)-(26) with the universal 
function K. 
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