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PREFACE

In studying a meteorological paper, the reader is prone to classify it in his
mind either as ‘“theoretical”’ or “practical’”’; and, depending on his own back-
ground, interest, and specific professional assignment, may peruse it in the
minutest detail or leaf through it with hardly more than the mildest of interest.
This is quite understandable. Meteorology, today, is split between two groups.
One is characterized by a researcher who is primarily interested in the physical
aspects of cause and effect and in the understanding of the mechanics of weather
processes. He attacks his problem by the mathematical manipulation of
basic physical principles which he has applied to some model considered to
contain the essence of the meteorological situation. The second group, on the
other hand, is characterized by the practicing meteorologist whose primary
concern is in the interpretation of the weather today in terms of a prognosis for

the weather tomorrow. His tools may not have mathematical rigor nor adhere

to striet physical principles, but they are time-tested and for the most part,
they work. It is only natural then that the theoretical meteorologist would
tend to have little patience with the empiricism of a “practical”’ paper and the
practicing meteorologist would consider of little value the mental exercise of a
“theoretical”’ paper. |

This situation is unfortunate. Although the immediate efforts of these
two groups are directed along different lines, the final goal is basically the same,
namely, to unravel the intricate pattern of the cause and effect of the weather,
Thus, the findings of either group must be a step forward toward this final goal.
The importance of an active interchange of ideas and information between these
groups was emphasized at a symposium on this problem in a recent American
Meteorological Society meeting.! The author has intended this paper to fall
within the scope of both of these groups. In leafing through the paper, the
reader will find both mathematical formulae and synoptic maps. It would be
unfortunate, however, if the sections on the mathematical development were
to be read only by the “theoretical” meteorologist and the sections containing
the applications only by the “‘practical” meteorologist. Such a dissection would
undoubtedly defeat the purpose of this paper.

The author is particularly anxious to interest the forecaster, the meteorol-
ogist who concerns himself with the analysis of weather information on a current
basis, in the ideas suggested here. In the last analysis, the only measure of the
usefulness of a theory is in the extent of its applicability in explaining weather
situations and in anticipating their occurrence. The efforts presented here are
admittedly limited. Nevertheless, it is believed that a start has been made.
It is hoped that those metcorologists who analyze today’s weather and forecast
tomorrow’s will find some-additional analytical and forecast tools here; by
understanding the basis for the proposals made here will enlarge the range
of the applications; and as a result of their own rich background in synoptic
meteorology Wwill arrive at a more complete set of useful forecasting criteria.
m on Coordinating Metcorological Rosearch and Woather Forecasting, 115th Nat{onal Meoting, American
Motcorologlea! Soclety, Washington, D. C., May 1052,
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THE APPLICATION OF THE HYDRAULIC ANALOGY
TO CERTAIN ATMOSPHERIC FLOW PROBLEMS

Morris TEPPER

U. S. Weather Bureau, Washington, D, C.
[Manuscript received Juno 3, 1952]

ABSTRACT

The nature of the hydraulic analogy is discussed, following which it is applied in the
study of two stratified liquids. A “‘three-layer’” atmosphere is then introduced and shown
to be equivalent to the two-liquid model. A discussion of the basic assumptions contained
in the atmospheric model reveals some of its deficiencies. Suggestions are made for coping
with these deficiencies. :

In the application of this model to atmospheric flows, a hypothesis is presented to
account for the erratic behavior of prefrontal squall lines. By adopting the hydraulic
analogy, these meteorological phenomena can be logically explained as manifestations of
pressure jump lines, which are the atmospheric analogue of hydraulie jumps in liquid flows
and of shock waves in gas flows. Illustrative cases of pressure jump lines reveal consistency
with the theory.

In the Summary, suggestions are made relative to the inclusion of the theory discussed
in this paper in the day-to-day analysis of the weather. Indications are also given for the
extension of the hydraulic analogy beyond the point covered in this paper.

Some mathematical remarks concerning the single-wave problem are given in Appendix
A and the conclusions are shown to correspond to those found in the text. Finally, in
Appendix B, an analysis of the general steady-state two-liquid problem is given and attention
is focused on the results as they pertain to the unsteady-state solution,

INTRODUCTION—THE HYDRAULIC ANALOGY

hydraulic analogy”’ as used in this

tinuity for an unsteady state, isentropic, one dimen-

iuggz&&s a \'ery.resm:icted me'nninlg. The reader
anale loned t.lgn}nst 1nt01:p1'ct1ng it to mean the
eanigg to liquid ﬂow. in general. The _exact
BUCceed‘g of the term will be 1?1-oug'ht out in the
thag Ing- 1):1‘.1'ngru,phs wherg it will be stressed
Paisoy Wdruuh(‘: analogy” refers only to the com-
ons made in the table of analogies (table 1).
n&mil(?: the d(?velop‘m(?nt and growth of a‘erody—
Dal‘ticulas & science in its own 1'1_ght, anfi W.lth tl_lo
e 5y ar 1111:{31'05‘0 in the .bOh&VIOI‘ of air ﬂlght in
ovelo 1)101'801110 region, it became e'ssent.ml to
o ﬂ«l‘ucrt) : i‘Lb(.)l‘fl tory models throu‘gh Whl.ch air ﬂ.ow
mng] Cristics c.oul‘d be studl.ed. Since Tvmd
iy Ft were exceedingly expensive u.nd 1'9lat1vcl}r
ion 4 to operate, a study of the desired informa-
0 i ?S attempted through some sort of analogy

1quid flow,
:Werul investigators [35], [43], [44], [45], [64],"
» showed that the equations of motion and cen-

sional perfect gas are completely analogous to the
unsteady state, incompressible, one dimensional
open channel flow in a gravity field, and further-
more, the momentum and continuity equations
are also analogous for steady state conditions
across a shock wave in the former and an hydraulic
jump in the latter. Thus, the analogy may be
applied in two ways. Tor unsteady state flows,
it applies to the region where there are no energy
losses (i. e., entropy changes in a gas or turbulence
in aliquid). In the steady state it may be general-
ized to include encrgy losses provided these losses
are not excessive. The details of this analogy are
given in the first two columns of table 1 and shall
not be elaborated on further at this time. For an
appraisal of this analogy the reader is referred to
thoe references cited above as well as to [11], [20],

1 'he numbers in brackets correspond ﬁu tho list of references to be found
at the ond of the treatise.



TaBLE 1—Table of analogies—the hydraulic analogy

Gas

One liquid

Two liquids

Three-layer atmosphere

Analogous | Hypothetical compressible gas | Incompressible fluid with a free | Interface separates two incom- | Three layers with an inversion
Domains p=const Xp7 surface in a gravity field pressible homogeneous liquids separating two fluids, each
_Clr_o (0, p"); one dimensional mo- autobarotropic (8, 6'); one
=T tion in lower liquid; level free dimensional motion in lower
surface. (See Chapter I) fluid, Coriolisfoxz')c’:a neglected;
H
3 o
(See Chapter I1)
Analogous | velocity (u) velocity (w) velocity (w) velocity (w)
Magnitudes

density (p)

height of free surface (h) -

height of interface (%)

height of inversion (k)

Analogous
Concepts

COII)pI'ESSi on wave

wave of elevation

wave of elevation

elevation-type wave

expansion wave

wave of depression

wave of depression

depression-type wave

sound velocity

wave velocity
o= (gh}

wave velocity

-0

wave velocity

1
c=[(1——% gh]2

sonie speed (a)

critical speed (c)

critical speed (c)

critical speed (c)

Mach No. M=——%

'!l’)%
dp

Froude No. F=——u—*-
(gh)

modified Froude No.
%

F:—‘_
[(1—p’/p)ghP*

modified Froude No.
| S S—
[(1—0/6") ghl*

supersonic flow M >1

shooting water F>1

L supereritical flow F>1

supereritical flow F>1

subsonic flow M<1

streaming water F<1

suberitical flow F<1

suberitical flow F<1

i shock wave

hydraulic jump

hydraulic jump

pressure jump




and [51). The accuracy and usefulness of this

?‘liogy has heen .inyestiguted numerically and by

DOI'tI(:jtory~ experiments. These have been re-

a2y o O in [6], (23], [30], [31], [34], [40], [41] and

,]‘: to mention but a few.

¢ Importance of this analogy is reflected
velgl{gll the il.lcren.sed interest in the study of high-
e&tmty flow in a channel and particularly in those

esiures of water flow which are analogous to the

8 red characteristics of gas flow (see [2), [4], [18],

], [29], [47], and [57]). For the most part what

% been done has been to take the theory of the
S&W of & compressible gas as given in any current
anéld&'rd textbook on aerodynamics (e. g. [9], {13],
o (38]) and to apply these solutions to the flow
. Water in an open channel. A review of any

ple of the papers cited above will reveal that

18 analogy has been utilized with a high degree
Ol success.

w Xtending this analogy, we shall show that if
© are dealing with two stratified incompressible
Wds, under cortain conditions, the behavior of
¢ flow and of the interface are analogous to the

¢havior of the flow and of the free surface in one

quid.  (See [14] or ch. 1) Consequently, the
table of analogies, table 1, may be extended to the
rd golumn, :

for the sake of simplicity of solution, meteor-
ologists have adopted the convenience of approxi-
Mating an autobarotropic atmosphere by an
quivalent homogeneous incompressible atmos-
Phore,  This approximation is discussed in. [5],
(141, [15], [22], and [53]. This same approximation
Smade here and a discussion of the validity of this
Approximation is given in chapter II. Having
fn&dc this approximation we may consider columns
3 and 4 of table 1 as analogous.

While the relationships between adjacont col-
umns of table 1 had already been known and
utilizod by many investigators, it was Freeman [14]
who gencralized on these relationships by showing
that the flow properties of a particular meteor-
ological situation (the subtropical easterlics) ave
analogous to the flow properties of a supersonic
gas. Table 1, the table of analogies, represents
the “gictionary” which translates the properties
of the flow in one domain into those of another.

In chapter 1, we pursue in finer detail the
solution and properties of the flow for the domain
represented by column 3. The equations of

motion and continuity are derived much as

Freeman did [14] and [17]; however, in the

2OROGD . 22

solution of the simultancous set of nonlinear partial
differential equations and its graphical representa-
tion wo shall follow Clauser [8]. For a more
extensive discussion of the solution of nonlinear
partial differential equations by the method of
characteristics the reader is referred to [3], [32],
and [48], or any standard book on aerodynamics
of supersonic flow. The emphasis of this chapter
lies not in the actual “solution” of the basic
equations, but rather in the extvaordinary prop-
erties of the flow which are expressed by the
characteristic lines,

In chapter II, we investigate the equivalence
of columns 3 and 4 of table 1 and make some
remarks on the gencral type of atmospheric
problems which can be handled by the method-
ology outlined in chapter I. The remainder of the
treatise deals with specific applications of this
theory and is illustrated by case bistories which
demonstrate certain features of the atmosphere
which may be explained very simply and very
directly by the theory as outlined in the table
of analogies.

There is an additional remark to be made on
the general nature of the problem. Basically, the
phenomenon discussed here, ‘‘the pressure jump
line,” is an internal gravity wave. - Earlier
discussions of gravity waves, whether in a com-
pressible or incompressible medium relied exten-
sively on perturbation theory ([25], {26], [36], [37],
[50], [{55]) or on a symmetrical form for the
solution of a solitary finite wave ([10), [37], [56)).
It will be excoedingly obvious that the gravity
type wave discussed here approximates most
nearly an hydraulic jump in appearance—and as
such can be deseribed neither as a perturbation
nor as a symmetrical wave. This lends consider-
able support to the explanation of the phenomenon
by means of the hydraulic analogy.

It has alroady been mentioned that for experi-
mental purposes it has proven useful to investigate
the propertios of the flow of a single liquid in a
channel (column 2) in attacking problems in
acrodynamies. Similaly, it is recommended to
investigate the properties of two stratified liquids
in a channel (column 3) in studying the properties
of certain atmospheric motions.  Such a beginning
has been begun under the direction of Dr. George
Bonton in the Hydraulies Laboratory of the
Civil Engincering Department, Johns Hopkins
University, and part of the work reported on
here is the result of this program in which the
author had the pleasure of participating.

3



CHAPTER I

THE UNSTEADY TWO-LIQUID FLOW PROBLEM

In this chapter we shall investigate with con-
siderable detail the properties of the flow indi-~
cated in column 3 of the table of analogies, table
1 of the Introduction. In this flow we assume:

1. Two incompressible fluids, p>p’, with A
equal to the height of the interface, de-
scribe the nature of the flow domain.

2. The horizontal velocity (u) of the lower
liquid is independent of the lateral coor-
dinate (y) and of the vertical coordinate
(2).

3. Both the surface (z=0) and the top of
the upper layer (the free surface, z=H) are
horizontal surfaces..

4. The pressure is hydrostatic (i. e., vertical
accelerations are neglected).

In these assumptions and in the mathematical
development to follow, the motion of the upper
liquid is not considered. However, as we shall
see later, the assumptions listed above together
with some of the conclusions which we shall reach
imply a definite restriction on the nature of the
flow of the upper liquid.

The equation of motion for the lower fluid is
given by

ou ou

10p
™ FYRIEE T

pbz

and the, equation of continuity by

bhb

(2) 3155 (h=0.

Since the pressure is hydrostatic, we have
(3) p=H~—h)p'g+(h—2)py
and therefore,

9p__

-~ . ok
4) dz =(p—p )y oz

Substituting into (1),
o} i
® i (1-2) %

4

Equations (2) and (5) represent our system of
simultancous differential equations, in the de-
pendent variables « and A. For convenience, we:
introduce a new variable ¢, given by

(6) | c2=<1 -—Bp—,> gh.

Substituting into (5) and (2) we get

ou, Ou oc
7 T T2 50

oc oc ou
(8) 2 "67‘*'2’1,6 5‘5+C -5—=0

We have thus transformed our original set of
partial differential equations in « and £ into a seb
of partial differential equations in % and e.

First adding and then subtracting equations
(7) and (8), we arrive at

) |:~§—t-|—(u+c) 5%] (u-+2¢)=0

a0 [F+e—oS|e—20=0.
(Compare equations (9) and (10) with the equa-
tion for a compressible isentropic gas given by
Lamb [37, p. 482)).

From elementary calculus we may write that
if f=f{x(),t} then the total derivative

af _ bf+bf dz
dt dr dt

Thus if we consider any line T' in the x;f-plane,
the total change with time of the function f along
this line in the ,¢-plane is given by the expression

dr
i refers to the slope!
of the line I' at the point where the total derivative
is being computed.  Only in the special case where

above. In this expression

1 The reader I8 to keep In mind that in this paper a slope of a line in tho

v 3
z,t-plane 13 olways glven by Z»%, never by (%:



’ g Prescribes the motion of a particle may we interpret
T

di 98 a particle velocity. In the more general case
da
di Merely refers to the slope of a line along which

the totq] derivative of a function is desired.
ThUS, equations (9) and (10) specify that along
those lines in the z,t plane whose slopes are-given

d
by E%:u_}_c for (9) or %:u—-c for (10), the func-

tions J(@,t)=u+2¢ or f(x,f)=(u—2¢c) respectively
1ave g zero total derivative with time.?

These lines are called characteristic lines.
) We repeat then, that along the characteristic
es given by

(1) j—f (characteristic line) =u e,

We have the relation that

12) 4+ 2¢=constant=a, B, respectively.

If we suppose for convenience that ¢>wu, then
gure 1 will represent schematically the state-
- Ments given in (11) and (12). It should be noted

18t since « and ¢ may both vary in the field, not
only will ¢ and B vary, but the characteristic lines

Tepresented by these parameters need not be

Straight lines. We shall now introduce three

efinitions which relate to the propertics of these
ch&racter_istic lines.

Definition: A wave is a family of charactoristic
lines. By (11) and (12) we have the
alternate definition that a wave ex-
presses & functional relationship in-
volving the dependent variables in the
z,t-planc.

DOﬁnition: An identifiable point on the wave is
given by a specific value of a (or 8).

Definition: The speed of a point on the wave at a
given point in the x,¢-plane is given by
the slope of the characteristic line
passing through that point.

Thus, in figure 1, the « family, exprossing the
Unctional relationship w-2¢==constant, repre-
Sents o wave travelling in the positive a-direction
nd the g family, expressing the functional re-
Wionship u—2e¢=constant, ropresents a wave
tl'&vdling in the negative x-direction. Further-
ore, the progress of any point of the a wave, say
@, is given by the characteristic line «; in the
————————

t12 A point In the z-plane refers to a location and o thme for the flow. At

i boint, the flow has a veloeity () and o value for ¢, givon by (8) and tho

'l:torrnco helght. Thue, ot every point thore Is o value of u--¢ (or w—¢).
16 required slopes (uekc) thus exist,

‘o tamily
o, L IO
{C‘. ‘aT
LY. L}
ﬁ; luQﬂy L
gx, u-¢ \b\\e“n
dt ,,\
NN \
%,
A
. \
Nop \
\\G. \\
EX
~
<
\
\|
P

F1aURE L.—Two-family choructeristics dingram.

z,t-plane, and the speed of the point is given by
the local slope of the characteristic line ay.

We shall see later that these definitions are in
perfect accord with owr physically intuitive con-
cepts of what are a wave, a point on a wave, and
the speed of a point on a wave.

SINGLE WAVES

Referring to figure 1, it is apparent that situa-
tions may arise (as when ¢»u) in which the two
families of characteristic lines diverge sufliciently
such that after some time the two families no longer
intersect. Bach family will then represent a single
wavo travelling in the divection indicated by the
slope of the characteristic lines. In the metcoro-
logical problems to which this theory has been
applied ¢ is usually much larger than « and indeed
thoe evidence seems to be that wo are dealing with
a single wave only. '

Consequently, we shall now restrict our atten-
tion to those solutions of our basic problem which
shall yield single waves only.  For convenience we
take the positive z-direction in the direction of the
wave propagation. Thus, we can say that we are
dealing with the « family only, while the g family
is missing. Another way of looking at this is that
the ‘“points” on the wave of the 8 family are in-
distinguishable one from th¢ other. This implies

5
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Fiourk 2.—Characteristics diagram of a single wave.

ﬁl=62=53= ..o =8
By (12)

(13) 4—2¢=pB=constant

over the entire z,t-plane or from (6).

’ ’ 1
(14) u—2 [(1—%) gh]7=constant

over the entire z,¢-plane.

If we have given the undisturbed values of the
flow velocity » and the interface height h, we may
solve for the constant in (14). This equation pre-
scribes that any subsequent value of « defines the
corresponding £, and vice versa.

We shall also find useful the following relation
derived from (13)

(15)

over the entire z,t-plane.  Through the definition

of ¢, (6), equation (15) prescribes the relation be-

tween the variation of « between two points and

the corresponding variation in the interface height.
We have then for a single wave

Au=2Ac

w-t20=ay
(16) {

u—2c=4.

Aloung a given characteristic line, e. g., oy, these
two equations yield a solution for » and ¢ in terms
of a; and B. Since a; is constant along a charac-
teristic line, we have the extremely important re-

6

sult that both u and ¢ are constant along any char-
acteristic line. Again through (6), this means thab
not only the flow velocity (u) but the interface
height (k) is constant along any characteristic line:
Furthermore, from (11) the slope of a character”
istic line must be constant at every point of the
characteristic line.

Thus, for a single wave, the characteristic line?
are straight lines along which % and ¢ (and from
(6) h also) are constant. (See fig. 2.) -

We shall now demonstrate that the definitio®
and properties of a wave as discussed above are
in accord with the customary physical and intui
tive ideas about waves. Consider a symmetrici’b1
steady state single wave (fig. 3) and its position &t
various times. The physical picture of the cvent
is given in the diagram to the left. On the right
the event has been transposed on to an 7,
diagram, where instead of drawing the wave profile
we have merely indicated the height values at the
appropriate time and place. Since the wave i¢
steady-state, we may draw parallel lines through
the same values of the wave height. Each line
represents a specific wave height (c. f., definition
of pqlnt on a wave) and furthermore the slope of
the line is the speed of that wave height (c. f.
definition of speed of point on wave). The entirt
ffzmily of lines passes through the wave at any
time (c. f., definition of wave) and expresses the

functional relationship that along each line the
wave height is constant.

METHODS OF SOLUTION

In t'his section we shall be concerned with the
following problems:

1) What distribution of values of flow speed
(w) and interface height (h) must be given
80 that we may find other values of w and
h in space and time (2,-plane)?

2) Given the required distribution, how may
we solve for these other values?

We have already seen that by (14) if we have
the values of hoth u and & at one point, then any
other value of one variable preseribes the one
corre:%pondingg value of the other. To find the
solutions at other points, we shall consider three
possibilities:

Case 1. Given (a) an initial value of flow veloeity
and interface height (ug, hq) plus (b) the
spacial wave profile (or velocity distribu-
tion) at a time (¢==0) (fig. 4).
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Fraure 4.—Moethod of solution, Case I.

Fraunk 5.—Moethod of solution, Caso II.
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0 now has
At each point

construct a line with a slope equal to

F1oURE 3.—Symmetrical steady-state single wave.
At each point

construct a line with a slope equal to
These are the characteristic

lines along which the flow velocity
() and the interface height (&) will

be constant.

These are characteristic lines
Case ITI. Given (a) an initial value of the flow

- along which the flow velocity (u) and
and interface height (ue, k)

plus (b) a distribution of interface

interface height (k) by its corre-
city

sponding value of c.

the interface height (&) will be con-
Step 2: Every point on the line

stant.
Case I7. Given (a) an initial value of the flow

interface height (h) by its correspond-

ing value of ¢.
Step 2: Every point on the line {=0 now has -

a value of u and e
g value of v and c.

(u-t+e).
(u+c).

velocity avd interface height (uo, ho) plus
velo

(b) the temporal wave profile (or velocit
distribution) at & single point (x

(fig. 5).
Step 1: Using (6), replace each value of the

Step 1: Using (6), replace each value of the
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Case 1L

uoho

Flaurg 6.—Method of solution, Case ITL,

heights (or velocity) along any arbi- °

trary line G(z,t)=0 in the x,t-plane (fig.
6).

Step 1: Using (6) replace each value of the
interface height (h) by its corre-
sponding value of ¢.

Step 2: Every point on the line G(x,t)=0
now has a value of u and ¢. At

each point construct a line with a

slope equal to (u-+c¢). These are
the characteristic lines along which
the flow velocity (u) and the inter-
face height (h) will be constant,

(Note: The simplest procedure to follow is to
convert b into ¢ whenever it appears and to solve
for u whenever necessary through the simple rela-
tion (15) rather than the more cumbersome (14).)

CLASSES OF WAVES

In the preceding section we noted the procedure
to be followed in constructing the characteristic
lines of a particular flow when certain initial condi-
tions are given. The gencral pattern formed by
characteristic lines can fall in any one of three
classes. In the following discussion we shall con-
sider the initial conditions as for Case I above.
The argument for the other cases follows in an
identical manner.?

UNIFORM FLOW (NO WAVE)

Given: At time {=0 a uniform interface height
(ko) or a constant flow velocity (u,). (Fig. 7.)

By (6) and/or (15) every point on the line =0
has the same value of v and ¢ (i. e., u, and ¢).
Consequently the characteristic lines are all

3 The following is cssentially a graphical discussion of the classes of waves
and of their propertics. A mathematleal discussion yielding the same results
is given in Appendix A,

8

Yoshg vosho voshy vosho X~y

FIGURE 7.—Charactoristics diagram of uniform flow.

pargllel and all have the identical values of the
variables along them. Thus uniform flow (or no

;lfcwe) is characterized by parallel characteristic
1nes.

. DEPRESSION-TYPE WAVE

Given: Initial values of u and h (u,, ko) plus at
time =0 a distribution of interface height (k) such
that h decreases in the negative z-direction in
some interval (r,<z<z;) (fig. 8a). Outside of
this interval the interface is undisturbed, such that

h=h, for x< 2,
h=h; for 2 >,

(Recall that the positive w-direction is always
taken in the direction of propagation of the wave.)

Consequently h,<h; for 2,<2,<2,<x,. By (6)
and/or. (15) it follows that for <<z, (u+c),<
(u+e¢);. Since the slopes * of the characteristic
lines must decrease as we go toward the negative
z-direction, the characteristic lines will fan out in
the direction of propagation of the wave.

To see what changes this wave undergoes with
increasing time, we take three cuts at time
t=0,1,2 and using the valucs given by the charac-
teristic lines, construct the wave profiles (fig. 8b).
We note that with increasing time, the slope of a
depression-type wave becomes shallower. Thus,
a depression-type wave is characterized by diverging
characteristic lines. A depression-type wave be-
comes shallower with increasing time.
FELEVATION-TYPE WAVE

Given: Initial values of % and b (u,, k) plus at
time t=0 a distribution of interface heights (k)
such that & increases in the negative z-direction
in some finite interval (@, <x<wm) (fig. 9a).

4 Bee footnote 1, p. 4,
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Again, we suppose that the interface is undisturbed
outside of this interval; such that

h=h, for a <z,
h=hg for x>,

Consequently by >h, for o; <z<u;< .

By (6) and/or (15) it follows that for x,<la
(u-e)>@w+c);. Since the slopes of the charac-
teristic lines must increase as we gd towards the
negative a-direction the characteristic lines will
converge in the direction of propagation of the
wave.

To see what changes this wave undergoes with
increasing time, we take four cuts at time t=0,1,2,3
and using the values given by the characteristic
lines, construct the wave profiles (fig. 9b). We
note that with increasing time, the slope of an
elevation-type wave becomes steeper and steeper.
"Thus, an elevation-type wave is characterized by
converging characteristic lines. An elevation-type
wave becomes steeper with increasing time.

THE HYDRAULIC JUMP

Obviously the conditions portrayed by figure
9b cannot proceed very far beyond the point
where the wave front has a vertical slope since
thereafter we would have denser fluid (the lower
fluid) overriding the lighter fluid (the upper fluid).
What happens (fig. 10) is that the wave “breaks’”
similar to the breaking of a wave on a beach.
As the wave overturns with considerable turbu-
lence, our assumption 2 relating to the one dimen-
sionality of the flow is violated and the theory
ceases to hold.

This situation is handled on the xi-diagram
by drawing the envelope of the converging
characteristic lines and attributing the effect of
all the characteristics along thisline—the hydraulic
jump.

If an envelope is not readily defined such as in
the intersection of just a few characteristic lines,
a good approximation customarily used is the
angle bisector of the intersecting characteristic
lines.

The slope of the jump line is, of course, the speed
of propagation of the jump. From the properties
of these three classes we can make an important
observation about the nature of waves admissible
under our theory. The above discussion implies
that if a wave exists, the characteristic lines cannot

10
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F1aURE 10.—~TFormation of an hydraulic jump.

be parallel. On the other hand, the discussion
on page 8 produced the result that the character-
istic lines of a steady state wave are indeed parallel.
Consequently, we must exclude the possibility of
steady state wave solutions in our theory.

THE NATURE OF THE UPPER FLOW
IN A SINGLE WAVE

It is our purpose now to investigate the restric-
tions which we have implicitly placed on the
upper liquid. We shall first demonstrate that
the flow of the upper liquid must vary with height
(2) in order to satisfy the previous solution:

Assume that the flow of the upper liquid is in-
dependent of the vertical coordinate (2). Thus
w' =f(a,t), where as before the primes refer to the
upper liquid. Therefore

ou , ,ou 10p" OH_
W+u oz p oz Y bw—o’
or
du’

The continuity equation for the upper liquid is
O (H—hy+2 (H—-hyuw]=0
ot oz ’

Combining this equation with the continuity
equation for the lower liquid (2), we have

2 (H—)u'+hul =0,
which when integrated yields
. (H—h)yw' +hu=Ek().
From (14), we conclude that

(18) w =u'(h,1).



Case 1.—Assume u’=u-¢, or the paths of the
Particles of the upper liquid coincide with the
characteristic lines. By (17) this assumption im-
Plies that the individual particles in any vertical
column of the upper liquid always remain over
the ‘same point on the wave. Thus, along the
characteristic lines,

oh , ,0h
But from the equation of continuity for the upper
liquiq

W e G =o.

ou’ .
Consoquently -5}--“;() or u’=constant depending

on time only.
By our assumption we have the conclusion that

T . .
i =u-+c=constant, at any given time, for all

Points on the wave. This implies parallel char-
acteristic lines, which means that we have no
wave at all.

Case 2.—Assume that the upper liquid particle
bath lines on the i, t=dingram do not coincide
with the charactoristic lines  (w/ #=u-t-¢). At
time ¢=¢, choose two points not on the wave but
on the siume side of the wave. These two points
will have the same velocity U, and by (17) the
Particle path lines through these two points will
be sty aight parallel lines. By our assumption it
follows that there must exist a time t=t;, such
that one of the two particle path lines intersects
the wave while the other does not.

Let 4 be the velocity on the particle path line
which intersects the characteristic line
uy be the velocity on the other particle path
line _
a* be the characteristic line intersected by the
particle path line having the velocity wu;.
All starred quantities refer to the values on
the characteristic line a™*.
At time t=1;, we have

h* # h’?)

~Where h, is the interface height given at time =i,
on the particle path line with velocity u;.  If u
(h*, 1‘2);611,2 (hg, ts), we contradict our assumption
that v =up==U.
If no two points on one side of the wave yield the
result that ), (h*, t,)#us (he, &) then the motion

225006° —~H2-~——3

of the upper fluid on that side of the wave must
be given by Us==u; (b*) for all . Since A* is con-
stant in o*, U must be constant in «* and all the
particle path lines are parallel to the characteristic
linc «*. The argument can now be repeated for any
other characteristic line @**, But the particle path
lines cannot be parallel to two characteristic lines
at the same time, and we reach another contra-
diction. Thus, v’ #u-+c is also not valid.

Since neither w'=u4-¢ or u’#u-+c is possible,
we conclude that our original premise is not valid
and the upper flow must depend on the z coordi-
nate. However, we shall show that even here
we must impose restrictions.  If the upper liquid
is not independent of the vertical coordinate, we

. may write

ou', o ou’ 1 op’ olf

St et T Ty e T e =0

bu’ ne , (bu

5 a -(u) + 52 (W' w")—u’ bz =0.
Integrating from & to /1 after (lropping a—-—-{—

ow’ A . .
Y due to continuity considerations, we have

oo’ " Ou’“
U de
Jh tet r ‘

Reversing the process of differentiation and in-
tegration, we have .

o [, ,bl:
BZJ;. udz—{—u,,-—at

but

—, wy=0..

o [[wtet Sl =o;

&

bh
Wh= bt+ LYY

Now define
— 1

H
w HV hf w'dz,

PSR (CY
=k ), v

where the expressions with a bar denote averages,
After substituting, we have

0 742 Py -
5i (H—h)T +5§ (H—hyurt=

Introducing the variance ¢*=wuw*—73,

1



2 e
a-n% S W (H— h)w—— T - (H—-WT+

— O O 7 By
u'—é—t(lf—h)—i-b—x (H~—h)e?=0.

Fmally, by applying the equation of continuity,
we arrive at the following for our equation of
motion

— 0w 1

Q 9)4 +u 2= "H=h b - (H— h)o‘
Combining the continuity equations for the upper
and lower liquids, we have in addition
(20) (H—h)w +hu=Fk @)
If ¢ and its borizontal derivative are negligible
relative to the terms on the left-hand side of equa-
tion (19), equations (19) and (20) reduce, as
expected to equations (17) and (18) which repre-
gent the conditions where the flow is independent
of the vertical coordinate. This we have shown to
be unsatisfactory since we have no wave. Thus,
¢? or its horizontal derivative must be significant
and then (19) represents the acceleration furnished
to the mean flow by the passage of the wave.

In order to have some estimate of the required
variance, let us consider a steady state flow varying
linearly with height, or

12

w=u,4-u(z—h) )

where u, is the upper flow speed at the interface
and u is a constant. Substituting this equation
into the definition for the averages, it follows that

1 -
_H=h3 S H—1)o* [_,Lﬂ,.]
— W Wy 1y
w
ox

where 4, is the wind speed at FI. Tor flows where
wy, >3u, the value of the fraction exceeds 25 per-
cent. Thus, we see that variances which are not
at all excessive will yield sufficiently large relative
values to the right-hand side of (19), and our equa-
tions will not degenerate to those implying no
wave,

We have shown that our solution requires that
the upper fluid vary with height, and, furthermore,
that this restriction is not at all prohibitive to our
model. On the other hand, nowhere in our solution
have we included the effect on the solution of the
flow of the upper liquid. As a matter of fact, we
have implied that there is no such effect. This,
however, violates one’s physical reasoning on the
nature of the flow. It seems reasonable to expeet
that some effect does exist. A discussion of this
problem is given in Appendix B, where the steady-
state two-liquid problem is discussed and the
effect of the upper flow analyzed in greater detail.



CHAPTER 1I

THE “THREE-LAYER” ATMOSPHERE

ASSUMPTIONS

In the previous chapter, we have discussed the
Properties of a two-liquid flow (column 3, table 1
of the Introduction). In this chapter, we shall
SPecily g “three-layer” atmosphere and indicate to
What extent, it may be described by the two-liquid

Omain, Having established this relationship, we
May deduce the properties of our atmospheric
Modc] simply by reference to the propertics of the
‘two‘liquid domain (i. e., by comparing columns

and 4, table 1).

e characterize a “three-layer’” atmosphere

by the following: .

L. The atmosphere consists of three layers.
The bottom two are autobarotropic, 6°>>6,
and the top layer is arbitrary. The
height of the inversion between the two
bottom layers is denoted by & and the
boundary between the middle and top
layer by H.

2. The horizontal velocity (u) of the lowest
layer is independent of the lateral and
vertical coordinates ( and z). We do not
consider the motion of the middle and top

 layers.

3. The surface z=0 is horizontal. The
boundary between the sccond and third
layers (Z) is disturbed only slightly by
the passage of a disturbance on 4, such

OH 0l
that o% <<5—;
4. The pressure is hydrostatic.
5. The effects -of the Coriolis force are
neglected.

We shall now proceed to show that the equation
o1 motion for this atmospheric model may be
Tansformed exactly into an oquation of motion
Or & flow in a two-liquid domain. Furthermore,
Ve shall show that the equation of continuity
O this flow may be approximated (o a reasonable
“ogree o the equation of continuity for the flow
' the same two-liquid domain. Thus, we shall be
8ble to apply all of the results of chapter I to our

three-layer atmospheric model. (For a slightly
different development, sec [14] and {17].)

THE EQUATION OF MOTION

We shall start with the equation of motion for
the lower fluid,

ou, O 10p
(1) —a"t—+’lt brﬁ—"; -a—;")
the condition of hydrostatic pressure in the lower
and middle fluid,

\ g LOp

(2) = ‘.(/ > 32’
1 op’

(3) 0=~—g——7—5%:

and the condition of autobarotropy for the two
layors,

(4) p=Apr, A=constant, y=gﬁ=1_4

v

(5) p’'=A'p"", A’=constant

As before all primed quantities refer to the upper
of the two bottom layers,

Consider the quantity -i?—, where ép refers to
any partial variation in p.  From (4)

8 Yop Y =N

1=t
Define 7r==7£7_1 p " . Therelore

©) %zfmw.

similarly from (5),

Y =
)] -f;::A” &n’, where 7r’==71~-i v

13



From 2),

A; b1r

- Integrating through a layer from z arbitrary in the
lower fluid to z=Ah, we have

1

(8) Alr—ml=g (h—2).

Similarly from (3) and (7),

1
(9) A m—ry)=g(H—h).

Since mj=m,, we may substitute (9) into (8)
and obtain

. 1
. 1
- ] ks
(10) A I:W—(Z—,>
Differentiating partially with respect to z, we have
(1 1)

A7bx bh[ (A)]_(/(A>an+mam,

but,

gH—h)— w;,] =g (h—2).

Omy_ v QP __piiy O
or Pn Ty T ‘a
i’

(where the double prime refers to the top fluid);
therefore the right-hand side of cquation (11)

becomes
( > o/ L’l
A’ ox Pu

Since A and A’ are constants, we choose to evalu-
’ N ” .
ate these constants at h where p,=p,. Therefore

1
<%>7:(£~;) =constant
P /n

Therefore equation (1) may now be written as

(}l: ( ) al:
( >(/[1_( ) b[l

O[ { oh
(&) ~(%),~1 5 <5

(12)

£

Since

14

we have finally

a3 Pt «-q[l—() o,

Since (%) is a constant by (12), we have trans-
h

formed the equation of motion for a “threc layer”
autobarotropic atmosphere to the equation of mo-
tion for a two liquid flow, where the ratio of the

densities is given by (—) .
P/n

In actual cases it is useful to use the ratio of the
potentigl temperatures /6’ rather than the ratio

of the densities at the inversion surface ( ) The

relationship is found readily by applying the gas
law p=Rp 7 and the pot(‘ntml temperature rela-

1000
[ (T> (x=.288) to each of the two

layers and equating the pressures st the inversion
level.  The relationship 'is found to be

() =5
P n~0'

THE EQUATION OF CONTINUITY

tion 0=1T

(14)

The equation of continuity for the lower {luid of
the atmospheric motion considered is given by

(15) 8+ 2 (u+ 2 (puy=0,

Expanding and rearranging, we have

111/[)+Ou+bw 0.,
p i

Integrating from z=0 to z=h and recalling that
% 18 independent. of 2, we obtain

(16) J ’l" dz+h a"+w,,
But
a7 w,— dh b/t,+ oh.

@i vz

therefore (16) may be written as
Bl dp b/b oh ou\
18 Jo p i dz +< ‘M+I )

where the quantity in parenthesis represents the
equation of continuity of an incompressible layer



of depth h. We shall endeavor to evaluate the
relative importance of the first term, i. e.,

dp
J() p dt de.

Expanding this term, we get

lp_10p udp, wd

19 ap — P 4 ,O

(19) P (H p Df+p br+p oz’

b ) o~ 9.,* ] =1 —f e e @
ut o pa? O( ,: ( )] "y where a is

the velocity of smmd. Similarly

l_’i__:’/[ ( ) bh
pa h

The last term of (19) may be written as

_w dp op_ w

w0p o
o dp oz 7 a?

pb/

In tegrating from 0 to h, we got

b ap ap
L > 0z 4

1 h Wy
ﬁﬁ 'wdz~~2

From (17) and (19) we may now write (18) as

h )/ hw

(/ (] (3 * h

= e rwdzx.——l—;— W ~-—-—(] ]
(l‘Jo a* 2a*

where w* =

10 M\ oh
(20) (1+F2 or) o T

M?* M? Dh
(] + F2 —21172 +/

u
M ==-(7=:M ach number,

4

where

==roude number,

(/)*

P f'/[ ()

. M i :
Note the appearance of the ratios Fond 5 m

modified Froude
“number.

equation (20). These ratios express the relative
importance of the Froude numbers denoting the
gravitational propertics of the flow relutive to the
Mach number denoting compressibility properties.
For small values of these ratios relative to 1,
we may drop them from equation (20) and have
remaining the exact continuity equation for an
incompressible fluid.

Since F&»>J2, we need focus our attontion only

. . 2

on the relative importance of the term ?ng qh
Since in the atmospheric problems to which t‘,lus
theory has been applied & usually ranges from

2,000 feot to 10,000 feet and has a modal value

ME
at about 5,000 feet, 0% will range from .03 to

.15 and have its most frequent value at about .075.
Thus in order to reduce (20) to an ecquation of
an- incompressible fluid, we drop terms which are
in the range of 10 pm(onl of the retained terms,!
and arrive at )

ol oh ou :
(21) —a—{-f—u—g;—{—h "53:-:0.

We have shown then, that within the limits of
certain approximations a ““three layer” atmosphere
containing two autobarotropic layers, separated
by an inversion surface (e=h) and obeying - the
assumptions specified on page 13 may be con-
sidered as equivalent to a two-layer liquid domain
whose interface is at z=h and whose density ratio
is given by (14). To these types of situntions
the results of Chapter I follow directly.

DISCUSSION OF ASSUMPTIONS

In many ficlds of science and specifically in the
science of meteorology there are two broad
approaches open to the investigator. On the
one hand he may amass a considerable amount
of observational data, seek somo sort of statistical
relationships among the various eclements and
present his interprotation of the phenomenon
under discussion, cither descriptively or by means
of empirical numerical relationships.  While con-
tributing a great deal to describing the behavior
of the phenomenon and even suggesting a pattern
for its future behavior, this approach contributes
little to the basic understanding of why the be-
havior is as it is. I urtlwnnoro 1t is diflicult by
means of this approach to pr o(h(-l, any behavior
of the phenomenon inconsistent with its behavior
during the period covered by the observational
data.

Uin order to aveld making this restristive assumption, ono should doefine
n modified helght ¢ and a modified veloeity » such that

Dh M2 Af2 1\1’ M? Ou O(’ A
(+ )t S (’+ ~pi)Hh =St o Ste S

The modifiod height and veloeity will have to satisty the aquation of motion

as well. Phe suthor has been unseaceessful in finding solutions for this (Uit
tion satisfylng the roquired criteria,

15



On the other hand, the investigator may apply
the rules of the science already at his disposal

and in this manner deduce the behavior of the-

phenomenon. In meteorology this usually means
the application of certain physical “laws” such
as the equations of motion and continuity and the
First and Second Laws of Thermodynamics to
the atmosphere. Unfortunately, the atmosphere
involves so many complex features, that the equa-
tions completely describing the atmospheric flow
have to this date defied mathematical solution.
However, the benefits to be derived from this
type of approach are so numerous that the in-
vestigator compromises his situation and resorts to
mathematical models. These models are admit-
tedly fictitious since they involve several assump-
tions about the atmosphere which do not in fact
describe the atmosphere at all. The investigator,
however, is able to solve his model mathematically
and arrive at specific results. In the last analysis,
the realistic criterion as to whether or not the
choice of a model has been a good one, depends on
whether repeated applications of the results of the
model describe the behavior of the true phenome-
non and predict its future action.

We shall now proceed to analyze the nature of
the assumptions of our model and show which
assumptions appear to contain weakness. In the
succeeding chapters we shall show that despite
these weaknesses, we have been able to explain a
great deal about certain atmospheric phenomena.
From that point of view we may consider the model
as a successful one.

The assumptions which we have used follow:

1. The atmosphere consists of three layers, the
lower two of which are autobarotropic and separated
by an inversion of zero thickness. In all the cases
to which this theory has been applied an inversion
of temperature is invariably found. The maximum
thickness of this inversion is under 50 mb. (about
500 m.). - Considering the fact that the recording
of a temperature lapse by means of radiosondes is
not a continuous process and that in the evaluation
of the radiosonde recorder trace considerable
smoothing is practiced, the actual width of the
inversions may indeed be even shallower. On the
other hand, estimates of the amplitude of the
jump indicate that a conservative value for its
normal amplitude is about 1,000 meters. Thus,
we might reasonably expect that the fact that the
inversion is not a sharp discontinuity, should not
present too serious a difficulty. Thus, if we

- 16

choose a height (F) where the effect of the jump
is “essentially negligible, we may consider the
atmosphere as consisting of three layers: (1) The
bottom layer below the inversion, (2) the middle
layer extending from the inversion to the height
H, and (3) the rest of the atmosphere above .
We have postulated that the lower two layers
are autobarotropic. In synoptic studies it has
been observed that the vertical lapse rate of
temperature is basically constant and that the
stratification is usually conditionally unstable,
i. e., the vertical lapse rate of temperature lay
between the dry and moist adiabatic lapse rates
<0.6>< 101< —%gs 1.0X104¢c. g. s.)- It can be
ecasily demonstrated that a horizontally homo-
genous layer, in which the pressure is hydrostatic
and which has a constant vertical lapse rate of
temperature, is barotropic and may be expressed
in the form p=Kp? where K and @ are constants
only in the undisturbed state.? Thus in develop-
ing the equations for atmospheric laycrs having a
constant lapse rate of temperature, equation (11)
would contain additional terms containing partial
1
derivatives of the form -b% K. These terms may
be expected to be significant for large values of
0K

= (i. e., large horizontal variations in pressure
ox !

. .0 /1N .
and density) or large values of 5?5(6) (. e.,

significant departures of the vertical lapse rate of
temperature from the adiabatic lapse rate).
Conversely, for relatively weak jumps and lapse
rates of temperature close to the adiabatic, the
model should be quite satisfactory.

We might give the following physical interpreta-
tion to this assumption of replacing a nonadiabatic
layer by one which is adiabatic. Since air parcels
in an adiabatic stratification are in thermodynamic
equilibrium, all energy changes which they under-
go are due to variations at the inversion level only.
On the other hand in a nonadiabatic stratification,
encrgy changes are due to variations in the entire

1 The proof of this theorem follows:

2T
Lot —5i
By the gas law and hydrostatie relation
op Op o
g O,
P Pr+ﬂ(/ 7

Sceparating the varlables and integrating, we have

1 all
pm= Kpa whore ;-—l-— v



column, Thus, in replacing a nonadiabatic strati-
fication by one which is adiabatic, we are in effect
concentrating the effects of variations throughout
the column, at one level, the inversion height,.

2. The horizontal velocity (u) of the lowest layer
is independent of the lateral and vertical coordinates
(y and 2). We do not consider the motion of the
middle and top layers. One may interpret the first
sentence as follows: We know that the wind is
rarely constant with elevation. Nevertheless, if
we take the average of the wind through the layer,
we may consider that our final results describe this
mean flow rather than the actual one. However,
this interpretation intrinsically places a scrious
restriction on the variation of the wind with
height, if we are to apply the equations of motion
and continuity to the mean flow. Wemay demon-
strate this by proceeding as for the discussion in
Chapter 1. We thus show that in defining an
average through the layer as

- 1
A=5 | A2
b Jo

the equation of motion reduces to

- 0

op
bi + ox +/I, E)x

(hoH)=— S5

R

where ¢?=%u%—%? is the variance. This equation
will be identical with the equation of motion for a
flow which is independent of height if we may

negleet the term%%(ha"’) relative to the other

terms., This immediately places a restriction on
the variance and its space variation.

In Chapter 1 we took as an illustration a
steady state flow varying lincarly with height, thus

u:u0+#2>

is the surface wind speed and ux is a
and found a relationship which here
form:
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where u,
constant,
takes the

Where u, is the wind speed at Ao In order that
this fraction be less than % it is necessary that

U .
‘?'[h<1.9. We see then that if we are to use the
0

equation of motion for the mean flow without the
term involving the variance, the wind at the top
of the layer must not be too different from the
wind at the surface. In the last analysis then, in
applying the theory, each case must be carefully
studied for the distribution of wind with height
in order to determine whether the variance is
sufficiently large so as to aflect the use of the basic
equation of motion.

Omitting the y component of the horizontal
velocity is not at all serious if we keep in mind
throughout that our results apply only to the
variations of that component of the wind which is
in the direction of the wave propagation.

In investigating the effect of the flow of the
upper liquid in the gencral steady state two-
liquid problem (sec Appendix B) we find that its
effect tends to be small for weak jumps and for
specds of the upper flow near the jump velocity.
For strong jumps or for upper flow speeds signifi-
cantly different from jump speeds, the motion of
the upper liquid appears to have a marked effect
on the solution. Thus one might reasonably
expect that in the unsteady state problem, the
upper flows would contribute to the nature of the
solution. Unfor tunntoly, the effect of tlns upper
flow does not appear in the unsteady state ‘model.
Of course, some estimate (even if only qualitative)
of this effect may be made by reference to the
steady state solution given in the Appendix B.

m bh
3. The >

The first part of this assumption holds fairly well
in the flat Plains area. However, the atmospheric
waves discussed here are also found in areas where
topography changes from sea level to 3,000-4,000
fect. Since the speed of the wave is pm-tlv a
function of the inversion height above & horizontal
surface, this variation in topography must have a
marked effect. In actual practice it is recom-
mended that a mean elovation be used for the
surface z==0 and that the problem be solved as
required by the model. It should be expected,
however, that the results would indicate excessive
jump speeds where the topography exceeds the
mean clovation and reduced speeds where the

surface z=0 1s horizontal and - §<<

" topography is lower than the mean.

A similar problem exists for the height of the
inversion. The theory implicitly assumes that the
inversion height is level in the undisturbed state.
This too may not always be the case. The pro-
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ceduré that is recommended is identical with the

one for topography. A mean inversion height
may be selected for the computations. Again,
discrepancies in the values of the jump speed-as
predicted by the model must be expected whenever
the inversion height is substantially different from
the average.

The latter part of the assumption, that a level
H exists such that Q—I—I <5z
factory. TPhysical mtun,lon and observational evi-
dence indicate that the amplitude of the jump
decreases with height such that eventually some
level H will be reached satisfying the criterion that
OH _oh
s <or
practice if the level H is very high the assumption
that the layer between h and H is autobarotropic
may not be satisfied.

4. The pressure is hydrostatic. 'This assumption
is a reasonably good one, provided we stay away
from the jump zone. In this zone there is no
doubt that vertical accelerations are appreciable.
Purthermore, we shall see later (ch. IIT) that under
proper thermodynamic conditions, copious precipi-
tation may be associated with a jump. This too
may have an effect on the surface pressure. Thus,
we are in the unfortunate position of not knowing
how much of the pressure rise is due to the vertical
acceleration or falling rain and how much is due
to the jump mechanism. Our only alternative is
to consider the pressure as hydrostatic, but we
should keep it well in mind that this assumption
is a particularly poor one in the jump zone.

Lamb [37, p. 425 in discussing Russell’s solitary
wave type argues that a steady state solution is
possible for this finite wave specifically because of
the vertical accelerations. It may very well be
that the omission of a steady state jump in our
solution arises directly from the assumption of
hydrostatic pressure.

There is another aspect of this assumption which
is important. The condition of hydrostatic pres-
sure together with assumption 3 implies that in the
undisturbed state the surface pressure is constant
in, the 2-direction. This of course is rarely the
case. However, pressure variations not due to the
jump are usually balanced by geostrophic winds in
the y-direction. In practice it is wise to investi-
gate only the pressure changes caused by the jump
rather than to consider the absolute values of the

oh . . .
is usually quite satis-

However, it should be noted that in
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pressure. In this manner any non-uniformity in
the initial distribution of pressure does not enter.

5. The effects of the Coriolis force are neglected.
In the cases to which this theory has been applied,
the speed of propagation of the disturbance is
much greater than the speed of the wind ‘in the
lowest layer. Consequently, any particle is under
the influence of the disturbance only a very short
time. As such in the neighborhood of the disturb-
ance the particles move in response to the pressure
gradient force only and are affected by the Coriolis
force only slightly. Fultz {19] has introduced the
Rossby number as a measure of relative impor-
tance of the inertia forces to the Coriolis force.
We are interested in the effect of the Coriolis force
on the wave propagatlon thus the Rossby number
in our model is given by

R =
0 Lf
where Ry=Rossby number
vy=speed of jump
L=characteristic length
f=Coriolis parameter

Representative values of these parameters are (in
c. g. 8. units): »,=2X10% L=8X10° while f~10-*,

Thus, Ry=25, and we may neglect the effect of
the Conohs force as being only a few percent of
the inertia forces.  However, in the early stages of
the elevation-type wave, whcn it covers a relatively

+ large distance and/or time, individual particles re-

main under the influence of the wave for an appre-
ciable period, Under these conditions the Coriolis
force would tend to deviate the particles to
the right.

6. No mizing. While we have not stated it
explicitly, our model implies that there is no mix-
ing of air between the layers, i. e., that the inver-
sion A is preserved as a simply connected bound-
ary. . In the undisturbed state, this assumption is
quite valid. However, with the passage of thoe
jump, appreciable convection takes place and not
infrequently the lower layer pierces the inversion,
and may cven destroy it completely. Although
the jump may have progressed onward by the time
this destruction of the inversion has taken place,
it is not unreasonable to suppose that the effects
of this inversion destruction may be propagated
too, and in some manner influence the futuve
history of the jump.,



In the discussion of the various assumptions
many more problems were raised than could be
answered.  The model has been demonstrated to
be deficient in many ways and only in a small part
of these, indications are given in what manner
these deficiencies may be handled. Consequently,
With our cwrrent model we cannot possibly hope
to achiove more than a general description of
atmospheric events.

We have spoken of a jump in the three layer
autobarotropic atmosphere.  We shall sece later
that this disturbance is identified primarily by the
jump in pressurc on a microbarogram. Conse-
quently, the name “pressure jump” and “pressure
jump line” have been assigned to an individual
disturbance of this kind and to a distribution of
such disturbances along a synoptic line ([14] and
158]).
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CHAPTER I1I

METEOROLOGICAL APPLICATIONS OF THE HNYDRAULIC ANALOGY

EARLIER ATTEMPTS

There is no record of when man first contem-
plated weather processes by analogy to the flow
of water. It was probably among the first and
most obvious approaches that suggested them-
selves to the serious investigator of meteorological
phenomena. As pertaining to the three layer
model discussed here, it is possible that Helm-
holtz [27] was among the first (if not the first) to
think of atmospheric waves on inversion surfaces
by analogy to internal water waves on density
discontinuities. Shaw [52] in 1913 really ap-
proached the essence of the hydraulic analogy
(table 1) in describing a line squall. (He did not
distinguish at the time between a cold front and
anonfrontal squallline.) He said, “these phenom-
ena recall those of the advance of a bore up a tidal
river which could give in a like manner a sudden
increase of pressure upon a recording gage if we
imagine it to be placed at the bottom of the
river.” 'The first known attempt at a more
direct application of the hydraulic analogy as
deseribed in table 1 was by McGurrin [39] in
1942. McGurrin tried to apply this analogy to
develop a mechanism for tornado formation.
While it may be debatable whether his conclusions
are indeed realistic, the fact that he arrived at
these conclusions through the use of the hydraulic
anglogy is noteworthy. In 1945, Rossby [46]
suggested that internal waves in the atmosphere
are capable of developing sharp forward boundaries
by analogy to the propertics of dispersive waves
in the ocean. While he did not use the hydraulic
analogy in the strict sense in which we have
described it here, his discussion of atmospheric
waves with sharp forward boundaries (pressure
jumps) by analogy to the flow of water is indeed
interesting. The first attempt at the application
to meteorological situations of the unsteady state
features of the hydraulic analogy was by Freeman
[14] in 1948, Freeman argued that since Coriolis
force effects are negligible in the tropics and more-
over, since the stratification of the atmosphere in
the tropics approximates a two laycr autobaro-
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tropic atmosphere, we may apply the analogy.
Using the mean wind in the lower layer as reported
on the 6-hourly pilot balloon observations, and the
variation of the inversion as reported by the 12-
hourly radiosonde observations at one station (ITol-
landia), he was able to construct the characteristic
lines and show that the jump with the proper in-
tensity arrived at a station 350 miles away (Biak)
at the appropriate time. In 1949 Abdullah [1]
demonstrated that if we assume that the atmo-
sphere behaves as described in column 3, table 1,
we arrive at many of the features of the flow de-
scribed in Chapter 1. Abdullah’s method of solu-
tion follows the mathematical method of Hugoniot
and for details the reader is referred to [1] or [21].
In essence, Abdullah discusses an elevation type
wave which progresses on a cold frontal surface
and steepens as it moves forward. Abdullah’s
main interest was to show that when this wave
breaks on the surface (after descending the cold
front) more than sufficient energy is liberated for
cyclogenesis to occur. This hypothesis he dem-
onstrated with a case study.

The first generalization of the problem with
regard to the application of the analogy to varied
atmospheric situations was in 1949 by T'epper and
Freeman [63] who stated the gencéral atmospheric
conditions under which the hydraulic analogy may
be utilized. Essentially, these conditions are the
assumptions listed in Ghapter 11,

APPLICATION TO PREFRONTAL SQUALL LINES

A review of the meteorological literature will
disclose that the term “squall line” is among the
oldest in meteorology, but is perhaps the least
clearly defined. Prior to the general adoption by
meteorologists of the frontal theory of cyclones,
it was customary to designate as a squall line,
any line of storms projecting in a general southerly
and easterly direction from a depression. Such
storms were characterized as being of strong
intensity, accompanied by strong wind gusts,
wind shifts, pressure rises, temperature falls, and
heavy rain of the showery type. With the adop-



tion of the frontal theory, some of these lines of
storms were redesignated more descriptively as
cold fronts. ~ There vremained the lines of storms
which appear in general in the warm sector of
cyclones, roughly parallel to the cold front and
along which there is intense convective activity.
This type of squall line has been referred to as a
pre-cold-frontal squall line and as an instability
line. All subsequent discussion of squall lines will
pertain to this latter type of line of storms only.

Unfortunately, very little is known about the
dynamics and kinematics of squall lines so that
their identity must be established on a surface
synoptic map almost exclusively by the preeipi-
tation that accompanics them. Very frequently
the analyst may have considerablo difficulty in
following a squall line through a serics of maps
because the associnted showery precipitation belt
appears to move very erratically, to fluctuate
considerably in intensity, and to die out suddenly
and reappear just as suddenly. Furthermore,
due to their similar synoptic features, it is not
uncommon to confuse a squall line with a cold
front when the two are geographically proximate.

In 1950, Tepper [58] proposed that this showery
precipitation belt may at times be a sufficient,
though not a necessary, criterion for establishing
the presence of a squall line. Instead, he pro-
posed a new classification—the pressure jump
line—of which the prefrontal squall line is only
a particular cxample. The proposed proessure
jump line is, of course, the phenomenon described
in column 4 of the table of analogies.

Motivated by a detailed descriptive account
by Williams [65] of seven squall lines which
traversed 55 automatic recording stations in the
Wilmington, Ohio, area, Tepper [58] reexamined
the original data for the purpose of finding some
explanation for the series of events accompanying
the squall line passage. The following relation-
ships were found, some of which had already beon
known to meteorologists ([24], 154], 165, and
others).

1. The squall line roughly parallels the cold
front; it lies to the cast of the cold front
and outruns the cold front.

2. Horizontal pressure gradients associated
with squall lines are extremely intense.
Gradients of the order of 1.15 mb./km.
are not rare. Moreover, the equilibrium
geostrophic wind for such a gradient would

have to be of the order of 2,500 m. p. h.

This indicates that geostrophic balance is

never even approximately reached, mean-

ing that individual air particles remain
under the influence of the intense pressure
gradient only a very short time. ‘

The leading edge of the pressure gradient—

the pressure jump—is clearly defined as a

continuous (though undulating) line on

micro-maps. (Sce fig. 11.)

4. In the region of the intense pressure gra-
dient, the winds blow practically perpen-
dicular to the isobars in response to the
pressure gradient force only; and, more-
over, on the back side of the ridge of
maximum pressure, the winds appear to
maintain their original direction (i. e., into
the ridge) but with diminished speed
since here they are being decelerated by
a reverse pressure gradient force.  Again,
at no time is geostrophic balance reached,

5. The variations in the pressure patterns
show decided unsteady state conditions.

3

6. In ordering chronologically the meteoro-
logieal parameters associated with & squall
ling, it is clear that the onset of the rapid
rise in pressure precedes all of the other
parameters.  This sequence of events
scoms to indieate that the onset of the
rapid rise in pressure is independent of
such clements as precipitation, wind shift,
temperature fall, and wind gustiness,

7. The speed of propagation of the squall line
far oxceeds the wind speeds recorded
below 10,000 feet.

8. The air mass into which the squall line
propagates is usually characterized by
two quasi-adiabatic layers separated by an
inversion of temperaturo.

The conclusions drawn from these data were
that wo are indeed dealing with a gravitational
wave on an Inversion between two adinbatic
layers. Tepper showed that by adopting tho
bydraulic analogy we might consider a prefrontal
squall line (i. e., the pressure jump line), as an
analogue to the hydraulic jump in hydraulics or.
to the shock wave in gas flows. He suggested
that the initiating mechanism for the pressure
jump line is the acceleration of the cold {front,
whose behavior would be much like the aceelera-
tion of & piston in a tube of fluid in producing a
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Fiourg 11, One-minute synoptic maps indicating the progress of a pressure jump line over a micro-network near Wilmington, Ohlo. The average distance
between stations is 2 miles,  T'he lines are isobars in 001”7 Hg, and represent the rise in pressure above its undisturbed value; the winds are given in terms

of ¥4 barb==1-5 m. p. h., 1 barb=6-10 m. p. h., ete.; precipitation is shaded.

shock wave. IHe showed that the properties of
the pressure jump line could account for all of
the idiosyncrasies of the prefrontal squall line.

One particular generalization resulting from
this hypothesis is that pressure jump lines may
exist independent of any associated precipitation.
Conscquently, a much more accurate identifica-
tion of this phenomenon is to be made through
the pressure jump behavior rather than the cus-
tomary precipitation pattern. Thus, one may
speak about “wet”” pressure jump lines and “dry”
pressure jump lines.  Obviously, the determining
factor as to which of the two will actually occur
depends on the thermodynamic properties of the
atmosphere and the amount of lift produced by
the pressure jump line. It was foreseen that a
single pressure jump line might at times be wet
and at times be dry.

Meterologically speaking, the pressure jump
phenomenon, as experienced at any one station,
is of very short time duration, the entire rise in
pressure occurring in a matter of a few minutes.
Consequently, for positive identification of a
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pressure jump line passage, ordinary barographs
currently in use by the U. S, Weather Bureau, are
considered inadequate.  These barographs com-
plete one revolution of the drum in more than four
days with the result that the time resolution of
the pressure traces must suffer.  On an experi-
mental basis, and for the purpose of studying
pressure jump lines, accelerated barographs have
been utilized in two studies by the United States
Weather Burcau.  The first was a small pilot
project network in the Washington, D. €., arca
during the spring of 1950, and the second, a
much larger network in the Midwest during the
spring and summer of 1951, The latter network
is to continue its operation during the 1952 season.,

WASHINGTON PRESSURE JUMP PILOT PROJECT

Kighteen automatic recording stations within
a radius of about 50 miles of Washington, D. (!,
participated in this program (table 2 and fig. 12).
Of these stations, nine had cach a microbaro-
oraph, hygrothermograph, triple register  (to
record wind speed and direction), and a recording




TasrLe 2.—=Stations participating in the Washington Pres-
sure Jump Pilot Project, spring 1950

|
. | Yode Jode
Station | ltl‘i((‘lll\ Station lf'l(l"l}x(';‘
|
Andrews Air Foree Base, | ADW [ Mt. Weather, Va_ .. MW
Md. | l >atuxent River, Va_._ NHK
Annapolis, Md - |- -ANP ‘ Quantico, Va_ ... NYG
Baltimore, Md P BAL ‘ Rectortown, Va_ ... RC
lh'll,sv_ill(\, Md.._. - +BL Rocekville, Md ... RIK
Chantilly, Va__.__ . ~CY Warrenton, Va WR
Charlotte Hall, Md . L Waterford, Va : Wi
Llkins, W. Va___ BKN Washington, D, C O
IPrederick, Md ... DK Washington National WNA
I'ront Royal, Va_ ... FRR Airport.

rain gage; one other had a microbarograph and
recording rain gage; and the remaining eight sta-
tions had only a microbarograph ecach. The
microbarographs ‘and hygrothermographs  were
modified with special gears to accelerate  the
motion of the drum. For the remaining instru-
ments, it was not deemed feasible to make a
similar modification. Tigure 13 shows an instal-
lation having all of the equipment. Upper air
data were available from the observations at the
Washington National Airport Weather Bureau
Station.

In addition to verifying the general features of
the pressure jump line hypothesis discussed in
the first part of this chapter and more fully in
[58], this study of 12 pressure jumps traversing
the arca during the period of observation, revealed
several additional features.

1. The intensity of pressure jump lines in the
Washington area is relatively weak.,  The
average miximum pressure rise was under
1.5 mb.

2. The origin of pressure jump lines in the
Washington area appears to be related to
the mountains to the west. Of the 12
cases studied, only one pressure jump line
could be extended westward across the
mountains. - (This was done through the
examination of the pressure data from
regular reporting stations.) In one case,
data were not casily available for study.
In the remaining 10 cases, the first indica-
tion of a pressure jump line was over the
mountains or cast of the mountains.

3. Some pressure jump lines pass across the
Washington area and are in no way re-
flected in current standard meteorological
analyses.!

I Phroughout this treatise the anal s of the WBAN Analysis Centor
(n joint Woeather Bureau, Air Forces and Navy weather analysis center
located in Washington, D, (1) are taken 0s representative of the best possible
analysis of the weather situation made by current standard meteorological

practices.  Whenever the WBAN Analysis Center analysis is mentioned,
therefore, it is done so in this regard only.
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FIGurEe 12.— Geographic distribution of stations participating in the Wash-
ington Pressure Jump Pilot Projeet, Spring 1950.  T'he contours are in feet
above m. s, L

FIGURE 13.—An autematic recording station typical of those in the Washing -
ton Pressure Jump Pilot Project and in the Tornado and Severe Storm
Network in the Midwest. The shelter contains a hygrothermograph on
the top shelf, a microbarograph on the center shelf, and a triple register on
the bottom shelf.  The ancmometer and wind vane are behind the shelter
and a recording rain gage is to the right.

4. lovidence for a completely “dry” pressure
jump line, predicted by theory, was found
to have occurred on March 15, 1950,
Ifigure 14 shows the sections of the micro-
barograms which went into the analysis.
IMigure 15 1s the isochronic analysis itself
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meumf 14.-~-Microbarograms, March 15, 1950,
precipltation records were available.

and indicates the progression of the pres-
surc jump line. In this figure, as in
subscquent isochrone charts, the number
to the right of the station circle refers to
the time of passage of the pressure jump
while the ratio to the left refers to the rise
in pressure divided by the duration of the
rise in minutes. Figure 16 is the upper air
sounding. It shows not only that the
stratification approximates that of the
three-layer atmosphere model, but also
that the air was very dry. As a consc-
quence we would expect that even con-
siderable lift by the pressure jump might
be inadequate to produce condensation
and precipitation. The star symbols in
figure 14 refer to those stations which had
recording rain gages but which did not
record any precipitation associated with
the pressure jump line passage. 11 can be
noted that all of the corresponding traces

‘T'he numerals below cach mierobarogram show Kastern Standoard 1ime.
No preeipitation was recorded at these stoations at the time of pressure jump possago,

5
Rockville Md.

I : 1 A"T[l
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X 1 ?—h—
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.3 05

Nashington, D.C

05
Waterford, Va.

1950

Stars indicate stutions for which

show marked pressure rises nevertheless,
This must rule out the hypothesis that the
rise in pressure in squall lines is due only to
falling precipitation or the associated cold
air downdrafts (sce [7], [49], ete.).  While
this particular case was the only one of the
12 cases studied in which no station re-
corded precipitation, it is of further interest
that in only one other case did all of the
stations rteport precipitation. The re-
maining cases contained numerous indi-
vidual examples of pressure jumps un-
accompanied by precipitation.

5. Sporadic pressure jumps which could not
he systematically aligned were also found.
The properties of such jumps need further
investigation.  Since our objective here is

to study cases of pressure jumps which are

aligned, we shall pursue this point no
further at this time.



PRESSURE JUMP LINE

MARGCH 1S, 1950
0400- 0800EST

BAL
200448 0500

~0800
P

F1guRE 15.~The fsochrone analysis of the prossure jump line of Mareh 15, 1950 over the Washington, D, C.area. The numbers to the right of each station
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TORNADO AND SEVERTE STORM NETWORK
IN THE MIDWEST

Subsequent to the operation of the pilot projuct'

in the vicinity of Washington, D. C., it was con-
sidered advisable to enlarge on the observational
network and to reloeate it in an area more con-
ducive to the study of storms. A special network
of surface stations was established in the Kansas-
Nebraska-Oklahoma arca and included approxi-
mately 135 stations (see fig. 17).  Of these only
about 50 were at existing weather stations, the re-
mainder were serviced by cooperative observers.
The basic instrument was again the accelerated
microbarograph to permit detailed observations of
short period pressuve fluctuntions,  Within this
lnrge notwork, an arc-shaped area was selected as
the area of maximum tornado incidence over the
past 17 years, At the 39 stations located in the
“are,” thore were installed high speed recording
rain gages, hygrothermographs, and wind equip-
ment, in addition to the microbarograph. Somo

additional 300 radiosonde and rawinsonde sound-
ings were made during critical periods to afford a
better picture of the weather elements above the
surface. (For a more detailed description of this
project, see [62].)

The analysis of the data for the midwestern
project is still in progress and final results will not
be available for porhaps another year.,  Two exam-
ples from these data will be presented here.  These
will illustrate clearly some of the saliont features
of the pressure jump line as a gravitational wave
on an inversion.

AN OSCILLATORY PRESSURE JuMP

Case 1: The pressure jump line of March 10, 1951,
wn western Kansas~—Unfortunately this pressure
jump line traversed that part of the network which
was only sparsely covered by acceelerated micro-
barographs, Nevertheless, some evidence for the
existence of the line could be found at 6 stations.
The microbarograms from Goodland, Garden City,

3175 - %
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Freure 16.~Upper air sounding for 0300 GM'T, March 15, 1950 taken ot the
Washington National Airport Weather Bureau Station.  The solid line is
a plot of temperature and the dashed line is a plot of the dew polnt tem-
perature.  For comparison there are included lines fndicating both the dry
and the molst adiabutic lapse rates of temperature.

and Dodge City (fig. 18) were all so very interest-
ing that a closer examination of the cvent was
made. It will be noted that the Goodland trace
represents o sudden rise in pressure—a pressure
jump—ifollowed by an oscillation which has all the
appearances of a damped wave. A closer examina-
tion will reveal that the period of the first two
waves is about 8 minutes and that of the succeed-
ing wavelets is about 5 minutes. 'The traces for
Garden City and Dodge City do not produce the
identical wave structure, but, in general, it is clear
that the over-all pattern is more or less the same.

The answers to the following two questions were
sought:

(1) What produced the initial and pronounced
rise in pressure at these three stations?
(2) What is the explanation for the damped
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F1aure 17.—Qeographic distribution of stations participating in the Tornado
and Severe Btorm Network in the Midwest during 1951,

wave which followed the initind pressure
rise?

Three alternatives may be considered as possibloe
causes for the initial pressure rise: (1) Falling pre-
cipitation, (2) advection of colder and denser air,
and (3) some sort of wave activity.

The first alternative may be disposed of in rapid
order. The weather (fig. 19) preceding and follow-
ing the rise in pressure at the three critical sta-
tions 2 indicated that aside from fog at Goodland
there was no precipitation in any form that could
be associated with the pressure rise.  Furthermoreo,
drizzle was the only form of precipitation reported
in all of western Kansas and southwestern Ne-
braska during the entire period in question, This
immediately rules out the alternative that the rise
in pressure was produced by falling precipitation.
We may note in passing that we rule out as well
downdrafts from thunderstorms as a possible causo
for the marked rise in pressure.  No thunderstorm
activity nor even convective-type clouds wero
reported anywhere in the vicinity,

2 T'he time of the rapid vise In pressure is glven to the tight of figure 19 and
denoted by an arrow,
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Moevre 18~An “osciilutory’ pressure jump,

: By adveetion of cold air as a cause for the pres-
sure rise, we refer to possible cold Irontal activity.
Indeed on the day in question, March 10, 1951,
a cold front did traverse the arca. On figure 20
we have plotted the synoptic features of the day
on an z, i-diagram. The 2-axis was taken normal
to the orientation of both the pressure jump line
and cold front. From the regular WBAN Analy-
sis Center 3-hourly surface synoptic analyses, it
was possible to locate the surface position of the
cold front on the diagram. These successive
3-hourly positions are indicated with solid tri-
angles, The successive positions of the pressure

225060 * B2 mnls

jump line as taken directly from the micro-
barograms are plotted as dots. It is apparent
that the analyst who intorpreted the weather of
the day considered the points G and H as cold
frontal positions. In other words his interpreta-
tion was that the pressure jumps were caused by
the rapid advection of cold air behind a cold front.
Referring to figure 20 we note that this picture
implies unreasonable conclusions about the cold
front. I B and G arve two successive 3-hourly
positions of the cold front, then the front speed
must have aeeraged more than 70 m. p. h. during
the 3-hour period 0630-0930 CST. Connecting
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GOODLAND, KANSAS

0625 M7 o 15 102 25 23 N 6 976
0703 E7 @ 15 NN 6 07
0728 ET ® 15 108 26 24 Q 2 9717
0802 E7 ® 4 F 5 978
0814 E7 ® 4 F b 15 joslo gsd < 0806
0825 E7 ® 1 F 135 27 25 S 7 984
0848 E4 ® 1/4 F /11 987
0907 W1 x 1/8 ZL- /12 088-%-
0930 Wi x 1/8 ZL-SG-F- 156 26 25 /1 990
1003 Wi X 1/8 ZL-SG-F s/ 15 993
1027 Wi x 1/4 ZL-SG-F 176 26 25 J/ 12 995
GARDEN CITY, KANSAS
0828 W4 ® '3 F 108 34 32 N\ 18 979
0910 E250 -@5-0 8 IN 16 979
n%e8 E250 -®5-0 8 102 39 35 N 14 979
1010 E200 05-0 10 f;\ 14 979
1028 E180 o 10 095 52 36 15 979 ¢
1106 E120 o 10 { 16 11056 1032
1128 E200 -91200 10 125 41 34 {/ 23+ 985
1140 W5 ® 8 t/ 20
1210 w5 ® 8 t/ 22 990
1228 W4 ® 3 L-F 142 35 32 4 25+ 990-%-
1310 W4 ® 3 L-F VS 244+ 991
1328 W4 ) 3 L-F 156 33 30 26+ 993
DODGE CITY, KANSAS
0928 w2 X 3 F 115 35 35 4+ 17 982
1005 w5 @ 5 F } 17
1028 E200 ® 10 105 40 36 { 28+ 980
1100 E200 -1400 10 20+ 979
1128 E200 01400 15 132 46 38 N\ 4 {1125 oggg ¢ 1110
1200 E17 10 15 [N 1 986
1228 E17 ® 15 129 49 38 \ 10 988
1306 M10 ® 7 ‘ t/ 18 990-%-~
1328 w5 ® 5 F 146 38 34 1/ 22+ 991
1408 w2 X 3/4 L-F V' 23+ 992
1428 E3 ® 8 146 37 33 ./ 21+ 991

Fraung 19.—8tation weather observations, March 10, 1951,

B and G with any smooth curve in order to allow
the front continuous velocities will indicate that
sometime during this 3-hourly period the front
speed must have exceeded 100 m. p. h.  On that
day, however, at no clevation did the wind exceed
45 m. p. h. behind the front. Furthermore,
figure 19 indicates that in each case, we can find
a later time (represented by a star) which repre-
sents the cold frontal passage much more clearly.
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We must thus climinate the advection of cold air
as a cause for the pressure jumps.

The cause of the rapid rise in pressure lies in the
third alternative—i. ¢, in wave motion. As
indicated in the previous paragraph the weather
observations at cach of the three key stations
(fig. 19) show that following the time of the rapid
rise in pressure there is, at some later time, a
definite indication of a cold frontal passage.
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These times have been plotted on figure 20 as
solid squares. If we draw a line through these
points, the line intersects D which is a subsequent
Analysis Center position for the cold front. The
proposed sequence is as follows: The cold front
progressed from A and one or two hours before B
it began to accelerate. During this period of
acceleration it set ofl a prefrontal pressure jump
line (E-F). The cold front’s subsequent motion
is given by CD. Points G and 1 now more
closcly represent pressure jump line positions than
cold front positions. Finally, we might add that
one hour prior to the arrival of the pressure jump

line the upper air sounding at Dodgoe City showed

an 18° C. temperature inversion between 840-
900 mb. ’

We repeat our conclusion. The synoptic evi-
dence is compatible with the conclusion that a
cold front accelerating into a three-layer atmos-
phere set off a pressure jump line which travelled
out ahead of it. T'his is another instance of a
dry pressure jump line. The reason that this

jump line was dry was not because the air was
exceedingly dry (as for the jump line of March
15, 1950—sce p. 23) but because the lift due to
the jump was unusually small.  We may estimate
this lift by using the formula developed in chap-
ter 11, .

él?«: ( [] —-—-0;] Ah/,
P 0

where A refers to a local variation. Using the
maximum rise at Goodland (2.5 mb.) and the
upper air data for Dodge City, we find

=4 B
Al -y X 105X em =420 m.

This is an exceedingly small lift and in this case
insuflicient to produce procipitation.
Wo have now to answer our second gquestion,
i. ., what is the nature of the oscillations?
Bakhmeteff and Matzke [2] report having found

experimentally that hydraulic jumps with%—g<2
)
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are oscillatory. To date no explanation for this
phenomenon has been put forth. For %—2>2 the
1

oscillations cease (fig. 21). If this relation holds
for the three-layer atmosphere as well, then in

. . h
the case in question where —;2~1.8 there occurred
1

the atmospheric analogue to the oscillatory
hydraulic jump. It is quite possible that all the
oscillations indicated on the microbarograms
(fig. 18) are due to the oscillatory pressure jump.

e —— G 4——‘\
P
p — — e e —
2 hy P —
a l<—- e e e
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Typical profile of @ weak hydroulic jump (he/n,< 2).

— 1
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Typical profile of o strong hydraulic jump {he /h\> 2).

FiaUure 21. Typical profiles of stationary hydraulic juinps.

On the other hand, it may be that the period set up”
by the oscillatory pressure jump was resonant
with a very short natural period of oscillation of
the atmosphere (see [12]). It is difficult to
answer the question at this time as to which of
these alternatives is the more likely.

There is one further bit of evidence to support
the contention that the oscillations of the micro-
barogram reflect the oscillations of the inversion
surface. We would expect that every time the
surface rose, cooling and condensation would take
place, and every time the inversion surface fell
heating and evaporation would occur (c. {. [33]).
Fortunately, the solar radiation records from
Dodge City were available for this comparison.
On figure 22 there arc superimposed the solar
radiation trace and the microbarogram for Dodge
City. This relationship is striking: A maximum
in pressure (due to the maximum rise of the
inversion surface) corresponds in time with a
minimum value of solar radiation on the ground
(due to the interruption of the solar beam by
condensed water vapor). A minimum in pressure
(due to a maximum fall of the inversion surface)
corresponds in time with a maximum value of
solar radiation on the ground (due to the decrease
in cloud particles, accompanying the evaporation
of water droplets). The fact that the solar
radiation oscillation persists beyond the pressure
oscillation may mean that the former (in this case)
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Fraunk 22,~Radiation trace and barogram for Dodge City, Kans,, March 10, 1951,
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is more sensitive to small amplitude oscillations
than the latter,

AN EXAMPLE

Case II: The pressure jump line through central
Kansas, April 24-25, 1951 —O0ne of the very first
steps taken in the analysis of the mierobarogram
data from the United States Weather Bureau
project in the Midwest, is to inspect each trace
for pressure jumps. The time and intensity of
a jump as it passes each station is plotted on a map
and then isochrones are drawn to indicate the
progress of the pressure jump line. Figure 23 is
the isochrone map for the pressure jump line
through Kansas on April 24-25, 1951. 1t reflects
the analysis of the data as taken directly from
the microbarograms. Note that along the line
indicated by the arrow the pressure jump line is
not ‘clearly defined until Lyons (I.YO). An
explanation for this feature will be apparent {rom
the subsequent discussion. Quite coincidentally,
the lateral extent of the pressure jump line did not
extend much beyond the geographic border of the

OF THE USE OF THE x, t-DIAGRAM
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PIGURE 23.—1sochrone tmap of pressure jump line passing through Kansas,

State of Kansas. (The letter N on figure 23
implics that in the inspection of the pressure
traces no evidence of a sharp pressure jump
could be found.)

This case is presented in some detail as an
illustration of how the acccleration of a cold front
and the subsequent development of a pressure
jump line might be handled by the method of
characteristics described in chapter I. For the
z-direction, we have taken a line running E-W
through central Kansas. This line is indicated
by an arrow on figure 23.

Synoptic maps: The surface synoptic maps and
the 850-mb. maps (as analyzed by the WBAN
Analysis Center) indicate that a cold front lay
more or less stagnant through central Kansas.
A “cold front aloft” approached from the west.
As the eold front aloft reached the position of the
surface cold front, the former disappeared and
the latter began to accelerate toward the east.
Suddenly a “squall line” appeared ahead of the
cold front. Furthermore, an open wave developed
on the surface cold {ront.
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Interpretation: The interpretation of these events
according to the pressure jump hypothesis may be
as follows. The cold front is quasi-stationary in
western Kansas. A new push of cold air crosses
the Rockies (analyzed by the WBAN Analysis
Center as a “cold front aloft”’). 'This additional
push produces a wave on the cold frontal surface
and this disturbance moves along as a gravita-
tional wave. (Sce [1].) A marked temperature
inversion (A8=8°'C.) at about 5,000 feet m. s. 1.
exists ahcad of the cold front. As the wave on
the cold front pushes against the air beneath the
inversion, it produces an elevation-type wave
which moves out ahead of the cold front on the
inversion. This elevation-type wave “breaks’ into
a pressure jump line in a manncr described in
Chapter I. Mecanwhile the original wave on the
cold front surface “breaks” on the surface causing
the front to accelerate eastward. According to
Abdullah [1], this action is conducive to cyclo-
genesis and indeed a wave does develop on the
surface front,

Graphical Representation on the xt-Diagram
(fig. 24): The successive positions of the surface
cold front are plotted as circles and a smooth
curve is drawn through these points to represent
the progress of the cold front. The cold front
motion is far from constant but rather repre-
sents first a constant speed (up to about 1500
CST, April 24), then a deceleration (up to about
1830 CST), then a uniform speed (up to 2100
CST), then an acceleration (up to 2400 CST),
then a uniform speed (up to 0330 CST' April 25),
and finally a deceleration. Undoubtedly, some of
these variations may be due to the coarscness of
the reporting station network by means of which
any pinpointing of a frontal position is difficult.
However, in lien of an alternative, we shall accept
as correct these positions as determined without
any bias by the WBAN Analysis Center.

Since the height of the inversion in the air mass
-ahead of the front was at 5,000 feet m. s. 1., we
have included the position of the intersection of
the frontal slope with the 850-mb. surface. Pre-
sumably, it is that part of the slope from the
surface to the 850-mb. level which would be
pushing against the air beneath the inversion.
The progress of the 850-mb. position of the cold
front was much more difficult to follow on the
z, t-diagram since the upper air maps are drawn
only every 12 hours. The April 25, 0300 GM'T

32

(April 24, 2100 CST) map yiclded the one posi-
tion at IT.yons. The subsecquent map yielded
another point at 1500 GM'T (0900 CST) off the
diagram, and so a line drawn connecting these
two points may be considered as representing the
mean motion of the cold front at 850 mb. between
these two times. By construcling a time cross
scction at Dodge City, we could interpolate for
another position of the cold front at 850 mb.
(1930 CST). We may draw a line between this
point and the position of the front at 850 mb. at
1500 GM'T, April 24 (0900 CST April 24, ofl the
diagram) to represent the mean motion of the
front at 850 mb. between 1500 GM'T April 24
and 0130 GM'T' April 25. We now have speeified
completely the progress of the front at 850 mb. ex-
cept between 1930 and 2100 CST.  In order to join
the two lines with a smooth curve, we are compelled
to draw a curve with a point of inflection. This
means that the front first accelerated and then
decelerated.

Thus, we have specified completely on an
z,t-diagram both the surface and 850-mb. positions
of the cold front. We have represented these
positions by continuous lines so that we have the
continuous motion specified.

The 1830 CST position (at NSC) of the wave

" on the cold front surface (the front aloft) was

available from the analysis of the surface synoptic
maps. From previous maps we determine its
speed and represent that speed by a line through
its known position at 1830 CST. All significant
synoptic lines have now been represented on the
z,l-diagram.

We need make one modification, however. The
theory as we have developed it implies that we
are dealing with a horizontal lower surface and
uniform velocities (through the vertical) below
the inversion layer. Naturally, a cold front hav-
ing a slope other than vertical, will not allow us
to meet these conditions.  'We must replace then,
the actual cold frontal slope below the inversion,
with a vertical cold frontal slope. This approxi-
mation may be made if we take the midpoint of
the positions of the cold front at the surface and
at 850 mh. as the position of the “vertical” cold
front. On the z,-diagram the line starting from
A represents the undisturbed motion of the “ver-
tical” cold front. We stop this line at the point
where it interseets the line representing the wave
on the cold front. At this point the latter im-
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parts an acceleration to the vertical cold front.
Similarly the line ending at B represents the final
motion of the “vertical” cold front. We join
these two lines with a smooth curve (without in-
tersecting, of course, the 850-mb. and surface posi-
tions of the front). Line AB represents the mo-
tion of the accelerating “vertical’”’ cold front.

The picture is now complete. The wave on the
cold frontal slope hit the “vertical”’ cold front and
accelerated it. This acceleration set off an cleva-
tion-type wave on the inversion surface ahead of
the front. The wave then broke into a pressure
jump. There is a suggestion of a deccleration
following the acceleration. This deceleration pro-
duced a depression-type wave which followed the
pressure jump in time. (The details for the con-
struction of the characteristic lines are omitted
here, but may be found in ch. 1.)

The crosses and circles reflect all of the synoptic
data used in the construction of the »{-diagram
and the characteristic lines. We shall now com-
pare our diagram with the microbarograms for
the stations located along the distance line. These
traces have been drawn in their appropriate place
(pressure increasing to the left).  Iach small di-
vision represents 0177 Hg. or about .3 mbh. We
shall consider the pressure traces in finer dotadl’

Ness City (NSC): As the wave on the cold front
passed over the station (1830 CST) therc was a
marked pressure increase.

Larned (LAR): The wave on the cold front
passcd at about 1926 CST, approximately the time
that the pressure began rising.

Liyons (LYO): The elevation-type wave had
already been formed and it passed LLYO at exactly
the time that the marked pressure rise began
(2032 CST). The total rise in pressure must be
attributed not only to the pressure jump line but,
in addition, to the wave on the cold frontal slope
which passed shortly afterwards.
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Reference to the x,t-diagram will reveal that the
time of the rapid risc in pressure at the remaining
stations fits very well with the calculated time of
arrival of the jump as computed by the graphical
method of characteristics.

Note the marked fall in pressure following the
rise at LYO, MCP, and HIl.. Our theory docs
not anticipate this. However, it is very interest-

“ing that this drop occurred only while the wave on

the cold frontal surface travelled down the slope
of the cold front. It may be that as the wave
traveled down the slope its shape continued to
change in such a way as to account for the pressure
variation. The gentler fall in pressure at COT,
LBO, and GAR (following the pressurc jump) fits
very well the depression-type wave characteristic
lines (see ch, 1V),

We also note that there was considerable agita-
tion in pressure at MCP and HIL between 1900
and 2000 CST. We omit any explanation of this
behavior except to point out that there may be
some connection between this activity and the
deceleration and stagnation of the cold {ront
during that period.

We conclude then that our interpretation of the
synoptic data of the day by means of the prossure
jump hypothesis is consistent with the pressure
data taken over a relatively dense network.,

Finally, it is of interest to add the following
precipitation data which cover the entire period
being discussed:

LYO.._ .. _.... None. CoT... ... ..... Trace.
MCP_ .. 01 LBO__ . ... ___ None.
HIL ... .02/ GAR._.__.___..__ None.

In other words, measurcable precipitation foll
only during the interval when the wave on the
cold front and the pressure jump line were fairly
close together. Their individual effects were
inadequate to produce any measurcable amount of
rainfall.



CHAPTER 1V

OTHER HYDRAULIC MODELS

In the previous chapter we have specified only
ono mechanism for the formation of a pressure
jump line—the acceleration of a cold front into a
region which could be described as a three-layer
atmosphere. This mechanism is deseribed sche-
matically in figure 25. 'The cold front accelerates
from its speed given by line AB to thoe speed given
by line CD. The curved line BC indicates the
acceleration (its slope is continually increasing,

implying its velocity Eat: is also increasing). We

prescribe that the air below the inversion and
adjacent to the cold front moves with the speed of
the front.  We have then a distribution of velocity
along a line in the zt-plane. If in addition we
know the initial inversion height, then by Case
III, p. 7, we may solve for the flow. We have
seen that this type of a distribution of conditions
(p. 8) indicates an elevation-type wave. IFiguro
25 shows this elevation-type wave and the forma-
tion of a pressure jump line moving out ahead of
the cold front.

This pattern is by no means the only way in
which a pressure jump line may be produced.
Following, we shall present other models for the
formation of pressure jump lines as well as a
propagating depression-type wave. This list is
far from complete and the author is certain that
other models can be and will be suggested by any
investigator concerning himself with this theory.

THE STANDING PRESSURE JUMP LINE

Freeman, Bailey, and Byors [16] have found evi-
dence of a pressure jump formed in & manner very
similar to the formation of a standing hydraulic
jump at the base of a spillway (fig. 26). This
phenomenon, well known to the hydraulic engi-
neer, is formed by the acceleration of water down
the spillway. If this acceleration produces super-
critical speeds in the liquid, then at the base of
the spillway the water level changes abruptly
from the high energy level (shooting water and
low depth) to the low encrgy lovel (streaming

water and high depth). TFreeman, Bailey, and
Byers proposed that in the atmosphere accelerating
air down the cold frontal slope could by analogy

FIouRrk 25, --r, t-dingram showing genesls of pressure jump line as a result of
the acceleration of a cold front.  (Schematic).
Sk,
4
("21)» \
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a Stonding Hydraulic Jump
—>
o e 2
b Standing Pressure Jump

F1auRrEe 26, Models of standing hydraulic and pressure jumps,
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Fieurk 27.—The “double” pressure jump.

produce a standing pressure jump ahead of the
front. They present synoptic data and show that
this evidence is compatible with their hypothesis.
This type of pressure jump line is more or less
stationary relative to the cold front. It may, of
course, move, but any such motion would be due
to the fact that the cold front itself moves. Thus,
if the cold front moved to the right (fig. 26b) a
station would experience a pressure fall with the
passage of the pressure jump line.

THE “DOUBLE” PRESSURE JUMP LINE

It is of particular interest that the synoptic
case cited by Freeman, Bailey, and Byers relative
to the standing pressure jump line contained an
additional feature. A region of precipitation B
(fig. 27) traveled out ahead of the front and, with
time, the distance AB increased. The authors
suggest that the precipitation was due to the
thunderstorm activity associated with the pressure
jump, A. However, this alone cannot explain
why the distance AB increased with time. A
more complete explanation may be given as
follows:

We start with an undisturbed inversion height
level. We then let air accelerate down the cold
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front slope. These accelerations produce a
“bump” on the inversion surface. The forward
half of this bump would be an elevation-type wave
(see p. 8) which we have seen would move out
to the right and develop into a jump. This jump
could then produce precipitation in region B.
With time, the length of the distance AB would
naturally increase. On the other hand the back-
ward half, A, would be the standing pressure jump
described earlicr. This experiment may easily
be duplicated in a water channel. As a matter of
fact, Freeman, Bailey, and Byers present a photo-
graph of just such hydraulic evidence in their
paper.

The double pressure jump line was inferred in
Tepper’s [60] model to explain the E-W oriented
pressure jump lines which move northward into
the Midwest. In this model, it was suggested
that the fast-moving easterlies coming around the
back side of the Bermuda High and meeting the
land surface of the Gulf States would produce an
E-W oriented pressure jump line which would
move northward. Actually, a double pressure
jump line would be formed. One would be a
standing pressure jump where the supercritical
flow would jump to a suberitical flow at a higher
elevation and the second would be the propagation
of this higher elevation northward and its develop-
ment into a pressure jump line. The author,
unfortunately, has no synoptic evidence to prove
that this pattern actually occurs.

THE BACKWARD-MOVING PRESSURE JUMP LINE

Another mechanism for the formation of a
pressure jump line is proposed in [59]. In the
synoptic case cited, the pressure jump line moved
in a direction opposite to the air flow in the lower
layer, consequently the choice of the name
“backward’’-moving pressure jump. The mech-
anism for the genesis of the pressure jump line is
as follows: The air flow beneath the inversion was
turncd from a general southerly flow to an easterly
flow and dircetly normal to a stationary front
which was oriented N--S. As in the case of water
flowing against a barrier and producing a backward-
moving hydraulic jump (fig. 28), it was suggested
that by analogy a similar situntion took place in
the atmosphere. The air below the inversion
flowed against the stationary front producing a
pressure jump line which moved “backward’” with
respect to the air {low,



The explanation for the genesis of the pressure
jump line follows from figure 9. We recall that the
a-direction is the direction of propagation of the
pressure jump line. In this case x is positive to
the east. At some initial time {==0, we have a
distribution of velocities such that the easterlies
diminish toward the ‘“‘barrier” (i. e., the stationary
front). Since u is positive for a westerly wind, we
might interpret the previous remark as indicating
u,>u, for <z, This is exactly the condition
for an elevation-type wave and its final form—a
pressure jump line.

GENERAL PRESSURE JUMP LINE MODELS

For a moving pressure jump line, the criterion
described on p. 8 must be satisfied. We must
have a situation which produces either

(8) hy>hy for 2.z, (an clevation-type wave)
or (b) u,>u, for ,<x, (an acceleration of the air

below the inversion).
From equation (14), chapter I, we have seen that
(a) implies (b), and (b) implies (2). However, in
any specific situation it might be more evident
that we are dealing with one or the other.

TFor stationary pressure jump lines we must
have conditions as specified in Appendix B. We
must be dealing with supereritical flow below an
inversion and some pattern that disturbs this flow.

The models discussed so {ar relate to pressure
jump lines only. In fact, pressure jump lines are
of particular interest because the vertical motion
which they impart to the atmosphere into which
they surge produces violent reactions (turbulence,
thunderstorm activity, precipitation, ete.). How-
ever, the theory described in chapter I allows for
depression-type waves as well.  Just as elovation-
type waves and pressure jumps would tend to
produce upward motion, depression-type waves
should tend to produce descending motion. As
such we might expect to find clearing and general
improvement of weather conditions with tho
passage ol a depression-type wave.

DEPRESSION-TYPE WAVE

A very remarkable instance of the passage of
the depression-type wave was observed over
Washington, D. C., in December 1949 and ve-
ported on by Tepper [61].  On December 6, 1949,
an accelerated microbarograph in Washington
produced a unique trace at the time that a pecul-

hydraulic
c jump
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§ level
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f/ Jump
% 1 ==> inversion
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 —
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Filaurk 28.—The backward moving pressure Jump.

iar cloud bank passed overhead. The rear (west-
ern) edge of this cloud bank ended very abruptly
and had the appearance of the edge of the Ant-
arctic Tce Barrier. A study of the synoptic con-
ditions of the day revealed that this pressure varia-
tion was produced by a depression-type wave
which traveled eastward from the Midwest and
was propagated on an inversion surface with a
speed far in cxcess of the wind speed in that
layer. The cloud bank also traveled at the level
of the inversion surface, but was advected by the
prevailing winds. The conclusion was reached
that the depression-type wave which progressively
overtook the cloud bank was associated with a
rapid drop of the isentropic surfaces which in
turn produced the adiabatic heating necessary
to desiceate the cloud partially in the west and
completoly over Washington, Confirmation of
this conclusion was found in the solar radiation
records (fig. 29) of the day. The general feature
of the solar radiation traces is that they contain
two significant points—one is a marked decrease
in radiation and the other is a subsequent sharp
increase in radiation,

In table 3, we compare (1) the time of decrease
in radiation with the time of onset of the cloud
bank and (2) the time of increase in radiation with
the time of passage of the depression-type wave.
Considering the errors that may arise in reading
the traces, the diflerence in loeation of the instru-
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TaBrLu 3.—Times of sudden decreasc and increase in solar
radiation. Figures in parentheses refer to time of arrival
of the cloud bank and figures in brackets to time of passage
of pressure pulse

Time (EST)

Decereaso Incronso
Indianapolis, Ind.. ..o ..ol - (()500; 0022 [0020
Columbus, Ohlo. ... 0914 gou% 1148 [1215]
Put-in-Bay, Ohio. .. 0047

Clevelund, Ohlo_ ... 1200 (1208 1316 (1320

lOOOé 1240 [1230,
Washington, 1. Co o rervccnicccmccccmnmmeenn 1455 (1455 1602 {1610

ments at any one city, and the possible lack of
accurate time considerations in taking observa-
tions, the agreement in the time values is remark-
able.
radiation with the onset of the cloud bank and
the sudden increase in radiation with the passage

We may safely associate the decrease in

of the pressure pulse. .
TFor further details, the reader is referred to the
original article [61].
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CHAPTER V

SUMMARY

In this paper it has been demonstrated that by
applying the hydraulic analogy to special classes
of meteorological situations, a consistent synop-
tically significant phenomenon may be arrived at.
This phenomenon is a pressure jump line.

The pressure jump line is a particular kind of

gravitational wave traveling along an inversion
surface. Its main characteristic is that it has a
very steep slope so that it appears on microbaro-
grams as a jump in pressure. This very steep
slope (estimated at about 1:5 as compared with
1:80 for cold fronts and 1:200 for warm fronts)
is responsible for marked forced lifting of the
atmosphere. Under favorable moisture condi-
tions this lift produces violent convection and
thunderstorm activity.

In order to identify a pressure jump line, a
meteorologist must use accelerated microbaro-
graphs. These instruments give a finer resolu-
tion of the time scale and as such can differen-
tiate between pressure jumps and more gradual
pressure rises. Channels could be developed by
means of which information about pressure
jumps, identified by accelerated microbarograms,
could be communicated to a central analysis unit.
By plotting the time of the jumps on a map,
isochrones marking the progress of the line could
be indicated. Then by reference to the thermo-
dynamic character of the atmosphere, the mete-
orologist could anticipate the type of weather to
expect with the progress of the pressure jump line.

This procedurc involves the knowledge about
the existence of a pressure jump line. Can any-
thing be said about forecasting its development?
Indeed there can, but unfortunately not too much.
First of all, the meteorologist must become sus-
picious whenever a cold front is moving into a
region described in this paper as a three-layer
atmosphere. It is recommended that in such
cases he choose a direction normal to the cold
front as his z-direction and begin plotting an u,f-
diagram, similar to those presented here.  On this
diagram he should plot

(1) The suceessive positions of the cold front.
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(2) The weather at the various stations along
his 2-direction.

(3) A continuous plot of the pressure, if
available, of the various stations along
the z-direction. Tn the absence of this
information, he may plot any pressure
information available to him.

If the cold front begins to show rapid accelera-
tions, the meteorologist could then construct the
resulting characteristic lines. The weather ele-
ments along the direction of these lines should be
carefully scrutinized for any indications of &
pressure jump line.

We might go one step further and look for early
indications that a cold front might be expected to
accelerate in the near future. One such indication
might be the appearance of a fresh surge of colder
air within the cold air mass itself (somewhat like
Abdullab’s type of wave referred to in ch. TII).
We have scen (fig. 24) that such a surge behind the
cold front could produce subsequent accelerations
of the cold front. Another sequence producing
cold front accelerations, and noted in several pres-
sure jump cases, scems to be as follows: A quasi-
stationary E-W cold front lies across the Central
States to the Rockies. When a small low pressure
system crosses over the mountains south of the
cold front, the portion of the front lying west of
the low center rushes southward. This accelera-
tion produces a pressure jump line. These are
but two mechanisms by means of which cold fronts
seem to accelerate.  Undoubtedly, there are many
others.  Once the practicing meteorologist begins
to look for pressure jump lines, it is incvitable that
a comprehensive listing of mechanisms which pro-
duce aceclerations of cold fronts will follow.

What about pressure jump lines that are started
by conditions not related to a cold {front? We
have seen that any meteorological situation pro-
ducing cither an acceleration of the air below the
inversion, or an clevation of the inversion surface
could vield a pressure jump line. Tt isg left, then,
to the ingenuity of the individual meteorologist to
recognize such a situation and handle it in 8 man-



ner similar to the one suggested here for the
accelerating cold front.

The bulk of this paper has concerned itself with
the pressure jump line and a discussion of its
meteorological properties resulting from a con-
sideration of the analogy between a pressure jump
line, a hydraulic jump, and a shock wave. How-
ever, the analogy need not stop here. The inher-
ent properties of the flows, as described in table 1,
suggest some interesting extensions of the analogy.
We might, for example, look for highly specialized
properties of the phenomena in their respective
domains and by means of the “dictionary’” con-
tained in table 1, translate these specialized prop-
erties so as to apply in another domain. One such
procedure was suggested by Tepper [60] in a
speculation concerning the origin of tornadoes.

In gas flows, it has been demonstrated (see {13]
and [9]) that when two shock waves intersect, they
produce a vortex sheet in the flow behind them.
Across this sheet, the flow is parallel but of dif-
ferent speed so that a concentrated zone of vor-
ticity is formed. Translated into the language of
the three layer atmosphere, we might state: When

two pressure jump lines intersect, they produce in the
Slow belind them a vortex sheet.  Across this sheet, the
Sfow 18 parallel but of different speed so that a
concentrated zone of vorticity is formed. The sug-
gestion was then made that tornadoes could form
in this zone of vorticity. Several instances con-
sistent with this hypothesis were presented in [59]
and [60], where it was shown that tornadoes were
apparently associated in both time and space with
the space-time locus of the intersection zone of two
(or more) pressure jump lines.!

In conclusion, we may state that the analogy
discussed in this paper between certain atmos-
pheric flows and liquid and/or gas flows opens up
a new avenue of study in meteorology, one which
it is hoped will lead to a better understanding of
certain meteorological processes.

1In a study of the 1850 tarnado season, the author found that out of the 130
individual tornado oceurrences studied, 71 (or 55 percent) could be located
within 60 miles of their corresponding location on the locus of what might bo
futerpreted as an intorseetion of two pressure jump lines, What was evon
more significant was the fact that many of the occurrences which did not
vorily werd nonetholess associnted with oue pressure jump lino, This seeng
to indicate that there undoubtedly are mechanisms by which tornadoes are
formed other than that suggested by the interscetion hypothesis, but that
these other mochanisms are assoclated with somo featuroe of a prossure jump
line.
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APPENDIX A

SOME MATHEMATICAL REMARKS ON THE SINGLE WAVE PROBLEM

In chapter I we investigated graphically the
three possible classes of single waves resulting
from our basic equations. Herewith, we shall
present the same results but from a more mathe-
matical point of view.!

Let us investigate the local change in the shape
of the wave profile as we progress with a point
on the wave, i. e., along a single characteristic

line. Thus, we are intcrested in a (?ﬁ> where
dt \ ox

the differentiation is along a given characteristic
line such that

0 0

=

(1)
Differentiating equation (6), Chapter I, yields

9 __: 1___) el ok

Since ¢ is constant along the characteristic line,
we have

oh e
(2) 5552

along the same characteristic line.

Thus, to investigate the change in shape of the
wave profiloe as we progress with the point on
the wave, we prefor to study % <%§> Applying

(1), we may write

. d foc\_ 0 [fOc 4 O%c
®  g(se)=a ()0 sy
But by equation (13), Chapter I,

(4) U-+e=3e--B.

Therefore cqum,ion (3) may be written as

dt Dx)_“é_i +( l()b :I gj)

Since ¢ is constant along the characteristic line,
the expression in the brackets vanishes, and we
have remaining

d (oc\_ oc\?
(5) i 85)“‘3 55)

The solution of (5) is given immediately by

(6) (g—°£>"1=3 (t—t'o)+(g—;>:,

where (%%) reprosents the local slope of the pro-
/0
file at an Initial time f=t,.

Uniform flow (no wave). 1f (g—;— —0, then for
0

oc . 0
all ¢, (—a;>-—90. By (4) this means e (u+¢)—0

or the characteristic lines are parallel.

Depression-type wave. In this case (—g% >0.
0

cy . . o¢ ]! .
Thus, with increasing time [—5; must increase.
By (4)

o} -
wo have Y (u-¢) deereases or the characteristic

This means that the wave flattens out.

lines must fan out.
: . . dc
Elevation-type wave. In this case <3§ <0.
Thus, with increasing time and until the value

of ¢ given below, must increase.  This

oc
ox

means that the wave steepens. By (4), 57 Ju+e

must increase or the characteristic lines converge.

Equation (6) is particularly useful, in that it
yiclds the time at which the wave of clevation
(in the vicinity of the point of the wave under
consideration) steepens into a vertical slope (the
jump). The time is given for

oc

oc . -
Sporeor Blt—t)=—(57

1 he author is Indebted to Professor D. C. Lowls of the Mathematies Departinent, Jobns Hopking University, for suggesting the approach given here.
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APPENDIX B

THE GENERAL STEADY STATE TWO-LIQUID PROBLEM

In chapter I, we succeeded in arriving at a
solution for the unsteady state flow in the two-
liquid problem. However, in so doing, we have
had to ignore completely the nature of the upper
flow and consequently have been unable to evalu-
‘ate the effect of the upper flow on the over-all
patiern.

We shall now restrict our-attention to the steady
state problem, but here we shall include the upper
flow. In this manner we shall attempt to learn
something specific about the importance of the
upper flow. In particular, we shall seck the
answers to the following questions: (1) Under
what conditions does the upper flow produce
negligible effects? 1In these circumstances we
might expect that our unsteady state solution
may be applicable. (2) When the effect of the
upper flow is not negligible, in what manner does
it affect the over-all flow pattern? In these
circumstances, the unsteady state solution may
be considered as a first approximation only.

The Problem: We establish our coordinate sys-
tem with the jump, so that the liquids appear to
enter the jump at one level and leave it at another.
All velocities are relative to the jump speed. The
variables used in the problem are given in figure 30.
The subscripts 1 refer to the conditions on that
side of the jump where the lower liquid appears
to enter the jump, and the subscripts 2 refer to

He —~_

he

Fi1GUKE 30.-—The general steady-state two-liquid problem.
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the conditions on the other side of the jump
where the lower liquid appears to leave the jump.
We retain assumptions 1, 2, and 4 given at the
beginning of chapter I. In addition, we specify
that while the surface 2=0 is a horizontal surface,
the height of the free surface, z=H, need not
remain constant across the jump. This latter
condition will later be amended in order that our
model remain physically the same.
There are two continuity equations

(1) Urhy=ushy
V111="0272

while by definition

(2) k1+771=H1
h2+ 772=[12

We have assumed the pressure hydrostatic, so
that

(3) p (at height z in the lower liquid)=
p’g(H—h)+ pg(h—2)
2’ (at height 2’ in the upper liquid)=p’g (H—2’)

In order to write the momentum condition, that
the difference in the pressure force equals the
difference in momentum flux, we note that the
difference in the pressure foree

F24 u !
AP= [ 'pde— [ puda="30 T~

g
(p—0") 5 (hi—1i)
while the difference in momentum flux is given by
AM = phyui+ o' ny05— phyui—p'n.0%

Equating A/’=AM, using (1), and defining for
convenience

by , u?
e 72 e
4) x 7 I h 8 .
M 2 v* by
Y ==—- e Pi==—
i G )



the momentum condition reduces to

V&
3;]““
s(y—1) [%‘]'——%;]:srl(l-wy)

Since we have not restricted the free surface to
be a constant across the jump, equation (5)
represents the momentum equation for the general
two-liquid steady-state problem. In any given
situation, r;, and s are considered known since
they refer to undisturbed properties of the liquid.
Thus, if we are given in addition, cither the flow
velocities (represented by I and ¢,) or the wave
profiles (represented by a and g) this equation
reduces to a single equation in two unknowns.
We need specify another condition in order that
the problem be determined. In our model this
other condition is that H, the height of the free
surface, is a constant. Before we apply this
restriction, we shall ingpect oquation (5) briefly
and draw two very simple relations from this
general equation.

1. A trivial solution is givcn by a=y=1, the
case of no jump.

2. Consider the case s=0, or p’ <p (the condi-
tion for a single hqmd)

(5) ri(x— 1)

Equation (5) reduces immediately to
rot i
(6) 9 0

which is the standard equation relating the height
ratio to the Froude number.

We shall now return to the conditions of our
basic model and impose the additional condition
that
) H,=H,

It follows readily that
(8) y=r+1—rz.
Substituting into (5), we have

’ 5"‘*:';1 Fi P L
©) + 7y (’1"}‘1—‘7'1‘1')
where F, and ¢, are modified Froude numbers
given by
1{'2 ¢2

L i R A
1—s ’

(10) F= &

The case where &;=0 produces immediate

results. In this case (9) reduces to
2
(11) e e s .“"_',;.1.__,}:0

which is analogous to (6), the equation for a single
liquid where, however, we replace the Froude
number by a modified Froude number. This

. . ) by
equation can be solved for u, in terms of :1:( )

to give the speed of a jump moving as a steady
state phenomenon into a region wheve the lower
liquid is at rest and the upper liquid is moving with
the speed of the jump. The solution yields

1 A, 4
(12) vj=—u1=—-\/-2—i—j-g(iwha(l——%)-

Returning to the basic equation (9) where &
need not be zero, we note that this equation is a
cubic in ».!

A graphical solution for 2 is given by a successive
application of figure 31 which is a nomogram
solution for the equation

e+1 B, .8
(19 5 7 + P .
The procedure for the use of this nomogram is
as follows:
Step 1: Enter the left-hand side with the initial
values of 7, and s and find the correspond-

. s .
ing value of =" on the ordinate.
1

Step 2: Enter the right-hand side with this value
of a, and the proper value of &, Find the
corresponding point on the & curves.
Follow the & curve until it intersects the
proper value of F,. This will give the
first approximation for the solution of
(9) ;L'].

Step 4: Compute ay,=

Step 3:

S
M r—ra)

1 Dr, Benton has indieatod to the author that for s sufficiently deep upper
lquid y=1-4-r—r 2 ~1, and (9) may be put into the “standard form”, viz.

x+1_Fiog
X

a3) )

Omd? S
n

.z - F
whore b T ,f -

14-2¢
Equation (13) would oxpress tho relation botwoeen o modified height ratio

and a further modified Froude number: in each ease, the modification is due
to the flow veloelty in the upper liquid,
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FIGURE 31.—Nomogram solution for the equation

Z+®1 -=0.

2 ML
2.z Ti




Step 5: Repeat Step 2 ete. using a, instead of @,
and find the next approximation x,.

Step 6: The series @, @y, @3, . . ., if it converges,
* will converge to thoe solution .

Several numerical examples in the range of values
ander interest have indieated that the series
%y, ¥y, X3 . . . converges very rapidly so that the
solution for (9) can veadily be found.

There are several conclusions that we may draw
about the nature of the flow by reference to equa-
tion (14) or figure 31. The conclusions are drawn
only for our case, namely that in which H remains
constant.

1. In order that a jump occur on the interface
(i. e., >1) the modified Froude number,
F;, must also exceed 1. By equations (10)
and (4) of this appendix and (6) of chapter I,
this implies that ju;|>|e;l. If we interprot
c; as a “critical wave speed’” characterizing
the conditions ahead of the jump, then
this result implies that a (stationary) jump
exists only for supereritical flow. TFurther-
more, since we have considered «, as the
flow ahead of the jump rvelative to the
jump, then for a jump propagating into
a liquid at rest |w|=|»,| where », is the
speed of the jump. Thus, the speed of the
Jump exceeds the critical wave speed ahead
of the jump.

In gas flow and in one-liquid flow (col-
umns 1 and 2, table 1) analogous relations
exist. In addition, it can be shown that
for these flows, the flow behind the shock
wave, or hydraulic jump, is subsonic or
suberitical, respectively. In two-liquid
flow, the flow that we are investigating,
this relation is valid only for the-case
®,=0. Itreadily follows from (14),(10), and
(1) that for 2>1, |u|<|e,| provided &,;=0.
Thus, if we interpret ¢; as a “critical wave
speed” behind the jump, we may stato
that when the wpper liquid s at rest relaiive

to the jump, the low behind the jump s sub-

eritical, This rule has not been proved for
large departures of the flow speed of the
upper liquid {rom the jump speed.

2. Figure 31 reveals another important effect
of the flow of the upper liquid. On the
right-hand side of the graph it can be
noted that all the z-equals-constant curves
have their minimum at $,=0. This means
that for the same initial depths of the

liquid (b, ;) and the same final depths
(he, n2), the value of the jump speed (for
a moving jump, the jump speed is |u|=
luy|=F, [(1—s) gh]¥?) is a minimum when
the upper liquid is moving with the speed
of the jump. TFor any other value of the
speed of the upper liquid, the jump speed
is greater.

3. It will be recalled that in the unsteady
state development we ignored the effect
of the upper liquid. Thus wo shall be
particularly interested in those ranges
where variations in the upper flow produce
little modification in the results. Trom
figure 31, it will be noted that such a range
is given in the neighborhood of &;=0.
For weak jumps (i. e., 2 near 1), the
range of values over which & may extend
without causing a large percentual change
in F, is wide. However, for large values
of x, such a range for @, is limited more
closely to the neighborhood of &,=0.

For moving jumps we may interpret
this as follows: For relatively weak jumps
the speed of the jump is altered but
little for a relatively wide range of de-
partures of the speed of the upper liquid
from the jump speed. However, for
strong jumps, significant departures of the
flow of the upper liquid from jump speed
tend to increase the speed of the jump
relative to what it would have been were
the upper liquid flowing with jump speed.

Energy Considerations. So far we have re-
stricted our attention to the momentumn and
continuity considerations only. While these yield
important rclations, they fail to shed any light
on the required direction of flow relative to the
jump. We have oxplicitly assumed that the
lower liquid enters the jump at a lower lovel than
the one at which it leaves it. This restriction
that «>1 is, of cowrse, not necessary for the
mathematical solution of the momentum equation.
Consistent solutions are possible involving 2<1.
These solutions on occasion will yield F,<<1.

Wo shall now prove that in most cases <1 is
not a physically realizable situation and that in
the remaining cases it applies to situations which
are not of interest to us. This we shall do by
applying the following energy requirement: Since
the flow is exceedingly turbulent in the jump zone
we postulate that there must be o decrease in
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energy flux as the two liquids pass through the
jump.

The energy flux (per unit width per unit time)
of the lower and upper liquids are given respec-
tlvely by

2
(15) e=(Z5+ pghts'gn ) ul

’ p’v? ’ ’
e=<77+pgh+pw0vw

We shall consider two cases.

CASE I: % and » have the same sign. In this
case, we postulate that the total energy flux
must decrease through the jump since an exchange
of energy between the two liquids is possible.
Thus, using (1) and (7) and (15)

AE=(c+e'y—(e+e')=

[% +g(h1—h2)+8(l(‘01 712)] purhi+

Eliminating %, and » by the equations of con-
tinuity and after a few simple algebraic manip-
ulations, we arrive at

(1~s)pjuhk 1)[ *1:]+

) (=

Substituting the momentum condition (9), this
reduces to

— @2

o a(y+ 1), e— 1)
~u y(x+1)]+

where E must be larger than zero.
(a) If 2>1, then the energy condition will he

satisfied provided
vy _y(z+1) Yy
<x(y+1) 284)2(:c+1)+1]

(b) If <1, then the energy condition will be
satisfied provided

v Y@+ (z—1)Yry
> LD et >
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CASE II: » and » have opposite signs. In this
case we postulate that the energy flux of each
hquld separately must decrease through the j jump,
gince an exchange of energy in the direction of flow”
is not possible. Thus,

0<Ae— YU g (o) (1 — 112)] puk

0>Ae’ [v‘ Jp v1.

Eliminating %, and v, and applying the momentum
condition (9) to Ae we have

Ae 2§ (@+1) (x )
0<E= (l—s) pgulh; (:1:—-1)[ 12 ray ey T 4z
- Ae’ Y1
OB == o gomm )[ ! 37]

The first of these is possible if and only if «>>1.
This implies y<<1 which automatically satisfies
the second condition. v

If we transpose our coordinate system so as to
be relative to the carth and assume that the steady
state jump is moving into a liquid at rest, we may
interpret these results as follows:

The necessary conditions for the existence of a
jump under these conditions are:

g+ e—12ry
Loth saorytt]

@ z>1 ,”‘<

whenever the upper liquid is moving in the same
direction as the jump but usually with a slower
speed.

(b). z<1 and 2)1>7/(2E+1) (:I:——1)2r11/+1:|

z(y+1) [2sdi@+1)

whenever the upper liquid is moving in an opposite
direction than the jump.

() =>1

whenever the upper liquid i# moving in the same
direction but faster than the jump.

In the atmospheric situations to which this
theory has been applied, the upper liquid is almost
always moving in the same direction as the jump.
Thus, since (b) is rarely if ever applicable, we
need restrict our attention only to the other two
possibilities, namely when 2>>1.
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